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I 

PREFACE 

 

In this technology and informatics era, answers of some 

questions that we are often facing need great transitions in 

theoretical and applied sciences. Do we really know the outcomes 

of pursuing pure sciences? How can pure and applied sciences be 

differantiated? And moreover, is this differentiation is a sine qua 

non condition? 

Every scientist knows that there are no precise boundaries 

between disciplines.  

From this point of start, the purpose of this seven chapters 

containing book is to confer some new approaches about science 

and mathematical sciences.  

The editors thanks to the authors for their competent work in 

preparing this book for publication. 
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CHAPTER I 

 

UNDERSTANDING OF EARLY UNIVERSE WITH THE 

MEASUREMENTS OF K*(892)0 AND (1020) RESONANCES 

 

Serpil Yalçın Kuzu1 

1(Dr.); Firat University, e-mail: skuzu@firat.edu.tr   

                0000-0001-8905-8089 

 

INTRODUCTION 

Bang! The universe was born. Within a few microseconds after the 

big bang, the whole universe was composed of quarks and gluons, the 

smallest known building blocks of matter. This new state of the medium 

is called quark-gluon plasma (QGP). As the medium expanded and 

cooled down quarks and gluons, also called partons, were started to form 

hadrons such as protons (p), pions () and kaons (K). In the end, the 

universe became what we observe today. In order to explore the universe 

and its physical properties, the first state of matter, the hot and dense 

quark gluon soup, must be created.  

Relativistic hadron colliders are the only tools that provide to 

investigate the features of hadronic matter interacting via strong force in 

very high temperature and pressure under laboratory conditions. In these 

intense conditions, hadronic matter is expected to return to its initial state, 

so called as partonic state. There are two relativistic hadron colliders in 

the world, namely the Large Hadron Collider (LHC) [1, 2] at European 

Organization for Nuclear Research (CERN) in Europe and the 

Relativistic Heavy Ion Collider (RHIC) [3] at Brookhaven National 

Laboratory (BNL) in USA. At these colliders, various particles have been 

collided at different energies. In order to study QGP phase formed in high 

energy collisions, large detector systems are needed. For this purpose, A 

Large Ion Collider Experiment (ALICE) [4] at the LHC, Solenoidal 

Tracker (STAR) [5] and Pioneering High Energy Nuclear Interaction 

eXperiment (PHENIX) [6] at RHIC were designed specifically to 

understand the medium and its evolution in relativistic heavy ion 

collisions.  

Dynamics of Heavy Ion Collisions: 

In heavy ion collisions, two ions look as Lorentz contracted 

pancakes due to their speed in the direction of their motion shown in 

Figure 1 [7]. The number of nucleons participating the relativistic 

mailto:skuzu@firat.edu.tr
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collision depends on overlap region of the nuclei in the transverse plane. 

This region is defined by the impact parameter (b) which is the distance 

between the centers of two nuclei in transverse plane. The nucleons 

participating in the collision are named “participants" and the rest of them 

are named “spectators".  

Geometry and impact parameter of the collisions can be studied by 

defining centrality and multiplicity classes. Centrality is defined as 

percentiles of the nucleus-nucleus cross section, which is a probability 

that a given atomic nucleus will exhibit a specific reaction. Multiplicity is 

the number of participants in the collision that can be determined by 

using centrality classes. A collision having the smallest percentile of 

centrality is called the most central or head on collision. Compared to 

other centrality classes the number of participants in the most central 

collisions is the largest whereas the impact parameter is the smallest. A 

collision having the largest percentile of centrality and largest impart 

parameter is called peripheral collision. 

 

Figure 1: Picture of relativistic heavy ion collisions [7]. 

The evolution of heavy ion collisions is shown in Figure 2 [8]. 

When two nuclei collide at relativistic energies, initially nucleons in the 

overlap region interact and produce high momentum particles which are 

the significant tool to study the initial state of the collisions. The rest of 

the particles in the region are thermalized and form hot and dense fireball, 

QGP. The fireball expands and cools down until it reaches chemical 

freeze-out temperature (Tc), the stage at which the particle species are 

fixed and inelastic interactions between hadrons stops [9, 10, 11]. At this 

phase the medium becomes mixture of partons and hadrons and all the 

partons are confined to form hadron gas. The hadronic medium continues 

to expand and cool down until it reaches kinetic freeze-out temperature 

(Tk), the stage at which the elastic scattering between particles stops and 

particle yields are fixed [9, 10, 11].  After the Tk, particles leave the 

collision area and can be detected by detectors. Each stage of the medium 

can be explored by studying produced particles and their properties as 

experimental probes.  
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There are two types of experimental signs of QGP: soft probes and 

hard probes. Soft probes such as particle multiplicity, yield and transverse 

momentum spectra provide information about expansion and 

thermalization of the medium. Study of hard probes such as partonic 

energy loss mechanism in the collisions is used to figure out the initial 

state of the medium.  

 

Figure 2: The space-time evolution of a heavy-ion collision. The ions 

collide when time (t) and space (z) equal to 0 [8]. 

RESONANCES 

Resonances are excited states of the corresponding ground state 

particles having lifetime () in order of a few fm/c (~10-23 s) which is 

almost the lifetime of the medium formed in heavy ion collisions [9]. 

Different than other particles the medium may modify their properties 

such as mass, width and yield. Due to their short survival time resonances 

cannot be measured directly by the detectors. Therefore, they can be 

studied by reconstruction of their invariant mass spectrum from their 

identified decay products with the help of invariant mass formula given 

as Eq.1 

                              minv = √(E1 + E2)
2 + (p⃗ 1 + p⃗ 2)

2                             (1) 

where minv represents invariant mass of the resonance, E1 and E2 are the 

energies and p⃗ 1and p⃗ 2 represent momentum of the decay products 

respectively. In addition to their decay process, resonances may rescatter 

and regenerate between chemical freeze-out and kinetic freeze-out 

temperatures. In regeneration process, resonances are reproduced by 

pseudo-inelastic interactions between their decay products and hadrons in 

the medium which results in enhancement of the resonance yield [11, 12]. 

In rescattering process, elastic or pseudoelastic scattering occurs between 

their decay products and hadrons in the medium which may cause 

reduction in the resonance yield [11, 12]. 
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Resonance studies play a significant role to investigate the features 

of the medium formed in relativistic collisions. Studying resonance 

properties such as particle ratios, yield and mean transverse momentum 

(<pT>) provides information about in medium effects on resonance 

productions. Because of their lifetime, they can be used to understand the 

dynamics of the hadronic phase. In addition, measurement of resonances 

having different lifetimes may help to explore the role of rescattering and 

regeneration processes in production mechanism of the resonances. Also 

comparison of resonances produced in different collision systems allows 

figuring out in medium effects. List of the resonances is given in Table 1 

[13].  

Table 1: List of resonances with their lifetimes, decay modes and 

branching ratios [13]. 

Resonances Lifetime 

c(fm) 

Decay Modes Branching 

Ratio[%] 

ρ(770)0 1.3 ++- 100 

K*(892)0 4.2 K++- 66.6 

Σ*(1385)+ 5.5 Λ+→(p-)+ 87 

Λ*(1520) 12.6 p+K- 22.5 

Ξ*(1530)0 21.7 Ξ-+→( Λ-)+ 66.7 

(1020)0 44 K++K- 48.9 

 

K*(892)0 AND (1020) RESONANCES 

K*(892)0 and (1020) resonances can be studied via their hadronic 

decays to charged pions and kaons: K*(892)0 → K± +∓ and (1020) → 

K± +K∓ [13]. In Table 1 it is given that lifetime of (1020) is 

approximately ten times longer than that of K*(892)0 [13]. Therefore 

measurement of K*(892)0 and (1020) resonance productions in various 

collision systems may help to explore medium and its effects on 

resonance production mechanism. For this reason their properties such as 

transverse momentum (pT) spectra, pT integrated yields (dN/dy) and 

particle ratios were studied in different collision systems and energies 

Transverse Momentum (pT) Spectra 

The pT spectra of K*(892)0 and (1020) were measured in various 

collision systems and energies. As an example in STAR experiment, the 

spectra of K*(892)0 and (1020) were studied in gold-gold (Au-Au) 
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collisions at a centre-of-mass energy (√sNN) of 62.4 GeV and 200 GeV 

respectively for different centrality classes shown in Figure 3 [14, 15]. 

From the figure it is concluded that for both resonances the spectra shape 

evolve from low to high centrality classes. 

  

Figure 3: Spectra of K*(892)0 (left) and (1020) (right) in Au+Au 

collisions at 62.4 GeV and 200 GeV respectively for different centralities 

[14, 15]. The dashed lines represent the exponential fit. The errors shown 

in K*(892)0 spectra are quadratic sums of statistical and systematic 

uncertainties. In (1020) spectra the dotted lines are Levy function fits 

[15] and error bars show statistical errors only. 

Spectra of the resonances were also studied in ALICE for various 

collision systems and energies. Figure 4 shows an example of the spectra 

study of K*(892)0 and (1020) in proton-proton (pp) collisions at √s = 13 

TeV in ALICE [16]. In the figure for both resonances the shape of the 

spectra evolve from low to high multiplicity classes for pT less than 5 

GeV/c. For higher pT values the spectra have the similar shape in 

different multiplicity classes which indicates that the processes that 

results change in the spectra shape in different multiplicity classes are 

dominant principally at low pT [16, 17]. A similar trend was also observed 

for unidentified charged hadrons such as Ks
0, Λ and Ξ for the same 

collision system [16, 17]. 
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Figure 4: Spectra of K*(892)0 and (1020) in pp collisions at 13 TeV for 

different multiplicities, scaled by factors. The lower panels show the 

ratios of the multiplicity-dependent pT spectra to the multiplicity-

integrated INEL>0 spectra [16]. 

The pT Integrated Yields (dN/dy) 

Integrated yields (dN/dy) of K*(892)0 and (1020) for different 

multiplicity classes are extracted from the spectra explained in previous 

section and extrapolated for the pT region where there is no measurement 

by fitting with a function in the measured pT interval [18, 19, 20]. In 

ALICE, integrated yields of K*(892)0 and (1020) as a function of mean 

charged particle multiplicity at midrapidity (<dNch/d>||<0.5) were studied 

in pp collisions at √s = 7 TeV and 13 TeV, and proton-lead (p-Pb) 

collisions at √sNN = 5.02 TeV shown in Figure 5 [16]. It is concluded that 

dN/dy of the particles increase from low to high multiplicity classes. The 

experimental K*(892)0 and (1020) results of pp collisions at √𝑠 = 13 TeV 

are compared with different model calculations [16]. From the 

calculations EPOS-LHC and PYTHIA8 without CR (color reconnection) 

models defined K*(892)0 yields well however for (1020) yields EPOS-

LHC model overestimated and PYTHIA models underestimated the 

results. 



7 

 

Figure 5: dN/dy of K*(892)0 (left) and (1020) (right) as a function of 

<dNch/d>||<0.5 for various collision systems. The measurements in pp 

collisions at 13 TeV are compared with results from event generators [21, 

22, 23, 24]. Bars show statistical uncertainties, open boxes show total 

systematic uncertainties, and shaded boxes show the systematic 

uncertainties [16]. 

Particle Ratios 

The pT integrated particle yield ratios in different collision systems 

allows exploring system size effect on resonance production mechanism. 

In the experiments K*(892)0 to charged kaon (K) and (1020) to charged 

kaon (K) particle ratios were studied in different collision systems and 

energies. Figure 6 shows K*(892)0 /K and (1020)/K ratios as a function 

of dNch/dη [25] and average number of participating nucleons, <Npart>, 

for various collision systems measured in STAR respectively [25, 26]. 

K*(892)0 /K ratio decreases with increasing number of participants and 

decreases from pp, deutron-gold (d-Au), to central Au-Au collisions. The 

decrease in the ratio is explained as the rescattering effect in K*(892)0 

production. (1020) /K ratio has flat trend with increasing Npart. Ratios of 

K*(892)0 /K and (1020)/K were also studied in ALICE for pp collisions 

at √s= 7 TeV [27], p-Pb collisions at √sNN = 5.02 TeV [28] and Pb-Pb 

collisions at √sNN = 2.76 TeV [29] as a function of cubic root of charged 

particle multiplicity density (<dNch/dη>1/3) that is used as a proxy for the 

system size at midrapidity [28]. Supression in K*(892)0 /K ratio is an 

evidence of the rescattering effects in high-multiplicity events which 

indicates a finite lifetime of the hadronic phase in p–Pb and Pb-Pb 

collisions. The explanation of no suppression in (1020)/K ratio for 

central collisions is the result of the long lifetime of (1020) resonance. 
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Figure 6: K*(892)0 /K (left) and (1020) /K (right) ratios in pp and 

various centralities in d-Au and Au-Au collisions at √sNN = 200GeV as a 

function of dNch/dη [25] and Npart [26], respectively. 

 

 

Figure 7: K*(892)0 /K and (1020)/K ratios in three different collision 

systems as a function of <dNch/dη>1/3 measured at midrapidity. Bars show 

statistical uncertainties with total and multiplicity-uncorrelated systematic 

uncertainties. Measurements in pp at √s=7 TeV and Pb–Pb collisions at 

√sNN = 2.76 TeV are taken from [27] and [29], respectively. 

 CONCLUSIONS  

Because of their short lifetime, resonances can be used to probe 

evolution of the medium created in relativistic heavy ion collisions to 

explore the early stages of the universe. For this purpose transverse 

momentum spectra, integrated yield and particle ratios of K*(892)0 and 

(1020) resonances have been studied in high energy particle physics 

experiments to investigate the medium evolution especially between 
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chemical and kinetic freezeout temperatures and rescattering and 

regeneration effects in hadronization. Spectra studies of these particles in 

collisions at high energies on the order of GeV and TeV showed that the 

spectra get harder for both resonances with increasing multiplicity and 

centrality. Integrated yields (dN/dy) of K*(892)0 and (1020) extracted 

from pT spectra demonstrated that for both resonances the yield increases 

towards higher multiplicity classes independent from colliding system 

and energy. Lastly, the pT integrated particle yield ratios of K*(892)0 and 

(1020) to charged kaons (K) were studied to understand hadronic phase 

and regeneration and rescattering effects on resonance production 

mechanism. In central and high multiplicity classes suppression in 

K*(892)0 /K is observed in various collision systems and energies since in 

K*(892)0 production rescattering is dominant over regeneration. 

Interestingly no suppression is observed in (1020) /K due to long 

lifetime of (1020). Resonance results indicate the presence of hadronic 

phase that causes decrease in yield of short lived resonances. 
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 1. INTRODUCTION 

 Cancer is one of the biggest disease in the worldwide. Despite 

intensive research efforts have been spent to improve new methods and 

techniques for diagnosis and treatment of cancer in recent years, this 

disease still remains one of the leading causes of death globally 

(Chaturvedi, Singh, Singh, & Singh, 2018; Cryer & Thorley, 2019; 

Grodzinski, Kircher, Goldberg, & Gabizon, 2019; Hartshorn et al., 2018; 

Kargozar & Mozafari, 2018; Yezdani, Khan, Kushwah, Verma, & Khan, 

2018; Zottel, Videtič Paska, & Jovčevska, 2019)  

 There are many types of therapeutic procedures which are 

conventional such as surgery, chemotherapy, radiation therapy, hormone 

therapy, gene therapy and immunotherapy provide significant 

improvements in cancer treatments. Though these therapeutic procedures 

possess several advantages, most of them suffer from several clinic issues 

that may cause adverse side effects on healthy cells close to the target 

cancerous area.  

 Hyperthermia (also called thermotherapy) is a promising alternative 

cancer treatment to current conventional therapies. This effective treatment 

modality is defined as increasing normal body temperature (~ 37.5-38.3 

°C) to higher temperatures (~ 42-45 °C) over a period of time by using a 

heat source (Anghileri & Robert, 2019; Guardia, Riedinger, Kakwere, 

Gazeau, & Pellegrino, 2014). The heat induced by heat source can harm or 

kill cancer cells with minimal damage to healthy ones.  

 The term hyperthermia comes from the combination of two Greek 

words hyper, means “raise”, and therme, means “heat”. The use of heat in 

treatment of various diseases was common in various cultures for 

centuries. In very ancient times, humans used natural sources such as sand, 

hot water and steam naturally occurring in the volcanic caves for the 
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purpose of local heating. The clinical use of hyperthermia was observed in 

Ayurveda (a traditional system of Indian medicine) around 3000 years ago. 

Hippocrates (540-480 BC) demonstrated that the disease was treated with 

heat using hot sand in summer. Hyperthermia for cancer treatment was first 

used by a Roman doctor named Aulus Cornelius Celsus (25 BC-50 AD), 

who observed that cancer tumors on early stage are extremely sensible to 

heat. However, the use of hyperthermia in the literature only goes back to 

last century. The first paper on hyperthermia was published by a German 

surgeon named Carl D. W. Busch (1826 – 1881) in 1866. This study was 

the fundamental research in hyperthermia showing that cancerous cells can 

be selectively killed using high temperature while not harm healthy cells 

(Busch, 1866). After this study, interest in research on hyperthermia was 

dramatically increased. Though, several work were done in late 1800s in 

this area, clinical hyperthermia were developed in 1980s. Today, research 

on hyperthermia continues very rapidly, intensely and enthusiastically. 

 Hyperthermia treatments can be classified into three main 

categories, depending on the treated area: local, regional and whole-body 

hyperthermia. Local hyperthermia is used to heat smaller area from organs 

like a tumor. Microwaves, radio waves, ultrasound waves are the form of 

energy is used to heat the tumor region from the outside of the body in 

local hyperthermia. Thin heating needles or probes, radiofrequency 

electrodes or implantable microwave antennas are also used for heating in 

local hyperthermia. In the regional hyperthermia, the heat is applied to treat 

a part of the body, such as an organ, limb or body cavity. Heat is produced 

by using external devices that are placed over the region to be heated. In 

one other of regional hyperthermia approach, which is called regional 

perfusion, the blood is removed and pumped into a heating device and then 

pumped back into the area (sometimes with chemotherapy drugs) for 

heating. In the whole-body hyperthermia the overall body temperature is 

raised by using heating blankets, thermal rooms and chambers, warm-

water (or wax) immersion or inductive coils. 

 Hyperthermia can be applied alone or in combination with 

conventional therapies. Though both hyperthermia treatment alone and 

combined have various advantages, there are still many drawbacks to 

overcome:  

a) Difficulty in temperature control that might leads to undesirable side 

effects such as bleeding, infection, blistering, swelling, pain and 

burns,  

b) Difficulty in temperature measurement at cell level, 

c) Uncontrollable temperature release on healthy cells, 

d) Non-uniform heat dissipation through the targeted region, 
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e) Lack of non-invasive control for deep cancer regions in the local 

hyperthermia approach, 

f) The small penetration depth which is generally not exceeded a few 

centimeters, 

g) Toxicity of therapeutic drugs. 

h) Limited aqueous solubility of chemotherapeutic drugs leads to 

toxicity.  

 Actually, these undesirable issues are the major obstacle to clinical 

cancer treatments. To overcome this obstacle, researchers have been 

pushed to develop a new method, which has non-invasiveness and reduced- 

or non-toxicity, is more efficient compared with current modalities. The 

use of magnetic nanoparticles in hyperthermia as heat agents seems to help 

eliminating the disadvantages mentioned above, known as magnetic 

hyperthermia. 

 In the next section, we focus on magnetic hyperthermia and types of 

nanoparticles used in magnetic hyperthermia. The physical principles of 

magnetic hyperthermia will be discussed in detail further on. Also, in-vitro 

and in-vivo studies in hyperthermia and future perspectives will be 

addressed. 

 2. MAGNETIC HYPERTHERMIA  

 Magnetic hyperthermia is based on the use of magnetic materials to 

convert magnetic energy into heat energy in an alternative magnetic field 

(Fig. 1).  

 

Fig. 1. The representation of magnetic hyperthermia. 



16 

 The first magnetic hyperthermia experiment was performed by 

Gilchrist et al (1957). In this experiment, a therapeutic temperature 

(desired temperature to destroy cancer cells) range in 43-46 °C was 

successfully achieved using 20-100 nm sized maghemite (γ-Fe2O3) 

nanoparticles (under 1.2 MHz alternating magnetic field) to destroy 

metastases in lymphatic nodes.  

 When nanoparticles are subjected to alternating magnetic field, 

several heating mechanisms cause inductive heat as seen in Fig 1. These 

heating mechanisms will be discussed further. In biological environment, 

inductive heat is immediately transmitted to the surrounding cancer tissue 

to destroy it.  

 There are several advantages of magnetic hyperthermia: 

a) Less complications and side effects compared to conventional 

modalities, 

b) The possibility of multifaceted approach to treatment using 

magnetic nanoparticles as a drug delivery vehicle and also as 

induced heater for magnetic hyperthermia under external magnetic 

field,  

c) The accessibility to deeper tissues with higher penetration depth 

than conventional activation mechanisms (ultrasound and 

radiowaves),  

d) Efficient heating capabilities of magnetic hyperthermia by precise 

control of size and morphology of magnetic nanoparticles,  

e) Non-invasively releasing mechanisms of magnetic nanoparticles as 

a form of colloidal suspensions by drug release pathways. 

 The advantages of the magnetic hyperthermia lead to a shift in 

research towards the development of new type of nanomaterials to be used 

in magnetic hyperthermia therapy. 

 3. TYPES OF NANOPARTICLES USED IN MAGNETIC 

HYPERTHERMIA 

 Over the past decades, various types of magnetic nanoparticles have 

been studied for efficient magnetic hyperthermia. Magnetic nanoparticles 

used in magnetic hyperthermia can be generally categorized as: metals, 

metal oxides and alloys. Each type of materials has its own advantages as 

well as disadvantages, limitations and restrictions for clinical uses. In 

addition, multifunctional hybrid nanomaterials have been extensively 

investigated by researchers in recent years. These hybrid materials with 

enhanced features seems to be next generation systems for efficient 

magnetic hyperthermia. 
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 3.1. MAGNETIC METAL AND MAGNETIC METAL OXIDE 

NANOPARTICLES 

 Magnetic metal nanoparticles and their oxides are the most 

commonly used magnetic materials in biomedical applications due to their 

relatively simple synthesis technique, stability in many colloidal media and 

their tunable magnetic properties. Iron (Fe), cobalt (Co), manganese (Mn) 

and Nickel (Ni) are some examples of magnetic metals. Iron oxides, such 

as magnetite (Fe3O4) and maghemite (𝛾-Fe2O4) and ferrites such as Co-, 

Mn- and NiFe2O4 are some examples of magnetic metal oxides. They have 

some positive and negative features compared to each other. For instance, 

Fe metal have higher magnetization compare to iron oxide of Fe3O4 and 𝛾-

Fe2O4 (Kafrouni & Savadogo, 2016). Higher magnetization is a desirable 

property for efficient magnetic hyperthermia in a safe frequency range 

(f<1.2 MHz) (Hadjipanayis et al., 2008). Furthermore, iron and its oxides 

have lower toxicity compared to Co and Ni based nanoparticles (Kafrouni 

& Savadogo, 2016). Pradhan et al. (2007) showed that CoFe2O4 

nanoparticles are more cytotoxic (with higher loss of cell viability of >10% 

at higher doses of >0.2 mg/mL) compared to Fe3O4 nanoparticles. 

 Besides the advantages of metals, high susceptibility to oxidation of 

metals limits their use in biomedical applications. At this point, the ferrites 

(with the general structural formula of MFe2O4, where M is the metal ion) 

with high oxidative stability appear to be as an alternative to metallic 

magnetic nanoparticles. However, the CoFe2O4 nanoparticles can be 

chosen over the Fe3O4 nanoparticles in hyperthermia applications, because 

it has higher magnetocrystalline anisotropy (23-40 kJ/m3 for Fe3O4 and 

180-200 kJ/m3 for CoFe2O4 at room temperature) (Nguyen, 2016). Higher 

magnetocrystalline anisotropy may causes larger thermal energy 

dissipation. Though, it is observed that iron and iron oxide nanoparticles 

seem the most suitable for magnetic hyperthermia due to their known 

effects to metabolism and their lack of toxicity, many efforts is paid to 

other metallic magnetic nanoparticles (e.g. Co and Mn) due to increased 

heating efficiency with very small concentration. In the case that a good 

biocompatibility can be achieved, these metallic nanoparticles could be 

used safely in magnetic hyperthermia.  

 3.2. MAGNETIC ALLOY NANOPARTICLES  

 Magnetic alloy nanoparticles seem to be a good another alternative 

material for efficient magnetic hyperthermia. Palladium/Cobalt (Pd/Co), 

Iron/Cobalt (Fe/Co) and Iron/Nickel/Cobalt (Fe/Ni/Co) are some examples 

of magnetic alloys (Çelik & Fırat, 2018; Deger et al., 2002; Salati, 

Ramazani, & Almasi Kashi, 2020). They have interesting features make 

them possible candidates for the research in magnetic hyperthermia. For 

example, low Curie temperature of magnetic alloys make them very 
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suitable for self-regulated magnetic hyperthermia. Self-regulation means 

controllable heating at the tumor site. Heat control is achieved by 

controlling the Curie temperature of the magnetic nanoparticles which 

have Curie temperature in the range of 40-45 °C. The Curie temperature of 

any magnetic materials can be tuned by reasonable changing of particle 

size and composition. Self-regulation process leads to avoid undesirable 

sudden temperature change during magnetic hyperthermia experiments. In 

self-regulated hyperthermia, the magnetization of magnetic nanoparticles 

drops to zero and heating suddenly stops once Curie temperature is 

reached.  

 The earliest study of self-regulated hyperthermia using 

Nickel/Copper (Ni/Cu) alloy seeds have Curie temperature of 46-47 °C 

was made by Brezovich et al (1984). Recently, Barbosa et al (2019) have 

studied Ni/Cu alloys nanoparticles for enhanced heating in magnetic 

hyperthermia. Kawahara et al (2019) have studied the magnetic 

hyperthermia properties of self-controlled heating elements consisting of 

Fe/Al milling alloys. These investigations are important for a better 

understanding of the heating and self-regulated ability of magnetic alloy 

nanoparticles suitable for magnetic hyperthermia.   

 3.3. NEW MULTIFUNCTIONAL HYBRID MAGNETIC 

NANOPARTICLES 

 In recent years, multifunctional magnetic nanoparticles have raised 

great interest for development of novel therapeutics and diagnostic 

methods for routine clinical application in cancer treatments. These 

nanoparticles have some unique advantageous, such as feasibility to non-

invasive delivery, biocompatibility, bioactivity, binding ability to cells, 

smart targeting, improved bloodstream circulation time, controlled drug 

delivery and release ability. The multifunctional hybrid nanostructures are 

made by combining magnetic nanoparticles with materials like natural and 

synthetic polymers (e.g. polysaccharides, proteins, polypropylene and 

polyethylene glycol) and porous materials (e.g. zeolite, mesoporous silica 

nanoparticles, metal organic frameworks). 

 3.3.1. POLYMERS 

 Polymers are extensively used materials in biomedical applications 

(Gaballah et al., 2019; Green & Elisseeff, 2016; Seppälä, Van Bochove, & 

Lendlein, 2020). They can be relatively designed and prepared easily in 

versatile architecture with appropriate functionality and physical, chemical 

and biological properties. There are several types of polymers, including 

hydrophilic and amphiphilic polymers, biodegradable and biocompatible 

polymers, stimuli responsive (e.g. pH and thermal responsive) polymers. 

A special class of polymers, functional polymers, which one or more 

reactive functional groups on the backbone or end of polymer chain, are 
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very appropriate to design multifunctional hybrid structures. For instance, 

Ding et al (2017) reported that magnetite-silver (Fe3O4-Ag) hybrid 

nanoparticles synthesized by a simple in situ reduction strategy. The 

obtained results in this study clearly indicates the enhancing effect of 

polymer coating on hyperthermia efficiency. In a very recent study, the 

efficiency of the niclosamide-loaded hyperbranched polymer-

functionalized magnetic nanoparticles on mediated hyperthermia and 

niclosamide (an anticancer drug) bimodel therapy were investigated 

(Ahmad et al., 2020). The results in this study indicated that polymer-

functionalized nanoparticles showed sufficient temperature gain for 

magnetic hyperthermia. 

 3.3.2. POROUS MATERIALS 

 Porous materials have received much attention in biomedical 

applications due to their ability to interact with biological ions and 

molecules both on their surface and entire volume. Various types of porous 

materials, such as zeolite, mesoporous silica nanoparticles, metal organic 

frameworks are used in different parts of body in accordance with the 

intended use.  

 For example, zeolites are very suitable to use in theranostic 

applications due to their high porous structure and tunable properties. In a 

very recent study, Vilaça et al (2019) developed a nanocomposite including 

zeolite as a suitable structure for the construct of a theranostic system. In 

this study, zeolite is used for drug encapsulation. The obtained results 

confirmed the successful formation of combined magnetic assemblies 

(magnetite nanoparticles) and microporous structure (zeolite) which are 

biocompatible and non-toxic. This study constitutes a step forward towards 

design multifunctional zeolite structures for theranostic applications in 

biomedicine.    

 Amongst the porous materials, the mesoporous silica nanoparticles 

are one of the most attractive materials due to their physicochemical 

features such as chemical, mechanical and thermal stability, high surface 

area, biocompatibility and uniform pore size. Moorthy et al (2018) reported 

that Fe3O4 modified mesoporous silica hybrid materials showed high drug 

capacity and pH-responsive drug release performance as well as high 

magnetic heating capacity with ability to reach the therapeutic temperature 

(45 °C). 

 Another type of porous materials is metal organic frameworks 

(MOFs). In contrast to other porous materials, synthetic versatility and rich 

host-guest chemistry makes MOFs very suitable structures to design of 

advanced functional materials (Denny, Kalaj, Bentz, & Cohen, 2018; 

Desai, Sharma, Let, & Ghosh, 2019; D. Sun, Jang, Yim, Ye, & Kim, 2018). 

MOFs are very attractive materials for biomedical applications due to their 



20 

high porosity (can be used to load drugs) and controllable surface 

functionalities (can be used to bind targeting and binding ligands and 

agents). Since MOFs have higher drug loading capacity (related to high 

porosity structure) compared to ligand and polymer modified magnetic 

nanoparticles, they appear to be a better choice for synergetic hyperthermia 

with drug loading to improve hyperthermia efficiency.  

Recently, Chen et al (2019) showed that efficient chemotherapy (due to 

pH-triggered drug release) and induced magnetic hyperthermia under 

alternating magnetic field (due to the magnetocaloric effect of Fe3O4 

nanoparticles) achieved successfully by using Fe3O4@PDA@ZIF-90 

(PDA: polydopamine and ZIF: zeolitic imidazolate frameworks which is a 

biocompatible MOF with acid-degradation) nanoparticles. There have 

been several promising studies published recently on hybrid materials with 

MOFs as novel systems to be used in biomedical applications (Beg et al., 

2017; Keskin & Kizilel, 2011; Y. Sun et al., 2020). 

 4. PHYSICAL PRINCIPLES OF MAGNETIC 

HYPERTHERMIA 

 When magnetic materials are exposed to alternative magnetic field, 

they generate heat by the conversion of magnetic energy into thermal 

energy. The heat is induced via three potential mechanisms:  

a) Eddy current,  

b) Hysteresis losses,  

c) Néel and Brownian relaxations.  

 The heat dissipations from such of these mechanisms mainly depend 

on intrinsic characteristics of nanoparticles and some other external 

parameters. Particle size and shape, composition and magnetic anisotropy 

are some examples of intrinsic parameters. On the other hand, the external 

parameters include frequency, amplitude and homogeneity of alternating 

magnetic field and the viscosity and thermal conductivity of medium (e.g. 

glycerol, agar solution and tissue). The representation of Hysteresis loss 

and Néel and Brownian relaxations are schematically shown in Fig. 2. 

 4.1. EDDY CURRENTS   

The first contribution of heating mechanism is defined by the 

contribution of eddy currents, which are generated as a consequence of the 

Faraday-Lenz law of electromagnetic induction. Eddy currents are a cause 

of energy loss that generate the heat energy (Joule heating), depending on 

the electrical resistivity and permeability of the material used and 

frequency of the applied field. In general, eddy currents occur not only in 

bulk magnetic materials but also in tissues. However, the tissues which 

have very low electrical conductivity (0.6 (Ωm)-1) produce a negligible 
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heating which is under practical therapeutic dose (Ortega & Pankhurst, 

2012). Similar to tissues, since nano size materials have a very poor 

electrical conductivity the heat contribution from eddy currents considered 

to be negligible in magnetic hyperthermia. Therefore, the magnetic 

induction heating of magnetic materials is dominantly originated from 

hysteresis and relaxation losses.   

 

Fig. 2. The representation (a) hysteresis loss, (b) Néel relaxation, and (c) 

Brownian relaxation. 

 4.2. HYSTERESIS LOSSES 

 The second contribution of heating mechanism comes from 

hysteresis losses in a magnetic material. Hysteresis losses are directly 

proportional to enclosed area under the hysteresis loop mainly defined by 

saturation magnetization (Ms), magnetic coercivity (Hc) and remanence 

magnetization (Mr) as seen in Fig. 2a. Hysteresis losses occur in both large 

single and multi-domain magnetic nanoparticles which their size are on the 

order of 100 nm or larger (Deatsch & Evans, 2014). The energy loss per 

cycle for systems with larger particles is reduced due to the reduction in Hc 

with a corresponding reduction in Mr. Contrary, for smaller particles the 

energy loss is increased due to the enhancement of the anisotropy energy 

barriers which separate the different orientation states of particles.  

 4.3. NEEL AND BROWNIAN RELAXATIONS 

 The third contribution to heat heating mechanism comes from 

relaxations called Néel and Brownian relaxation. While Néel relaxation 

refers to the heating due to magnetic nanoparticle’s dynamical fluctuations, 

the Brownian relaxation is related to physical rotation of the whole 

particles within the medium as seen in Fig. 2b-c (Fortin et al., 2007; Kumar 

& Mohammad, 2011). 

 The magnetism of any material is determined by the combination of 

finite size and surface effects when the size of material is reduced from 
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bulk to nano scale (~100 nm). At a very small size (i.e. a few tens of 

nanometers) a magnetic nanoparticle behaves like a giant paramagnetic 

atom with a fast response to the external magnetic field. This means that 

thermal energy causes the random flipping of the magnetization alignment 

away from its equilibrium state related to the energy barrier. The random 

flip of particle magnetic moment leads to zero net magnetization in the 

absence of an external magnetic field due to smaller anisotropy energy 

compared to thermal energy. This thermally activated magnetism which 

appears only in small ferromagnetic or ferrimagnetic nanoparticles is 

called superparamagnetism. Although coercivity and remanence disappear 

in superparamagnetic state, significant losses can still be observed due to 

Néel and Brownian relaxations for superparamagnetic nanoparticles. 

 Nanoparticles undergo Néel relaxation process with a characteristic 

relaxation time called Néel relaxation time, 𝜏𝑁 is given by, 

𝜏𝑁 = 𝜏0𝑒𝑥𝑝ൣ𝐾𝑒𝑓𝑓𝑉 𝑘𝐵𝑇Τ ൧   (1) 

where 𝜏0 is  the attempt frequency has a value in the range of 10-13-10-9 s, 

Keff is the effective anisotropy, kB is the Boltzmann constant and T is the 

temperature. The Keff is one of the key parameter that governs the heating 

efficiency of the magnetic nanoparticles. 

 Besides Néel relaxation, Brown relaxation occurs for the particles 

suspended in a fluid suspension with a viscosity η. In this case, the 

magnetic nanoparticle physically rotates itself within the fluid at a 

characteristic relaxation called Brown relaxation time, 𝜏𝐵, is given by 

𝜏𝐵 =
3𝜂𝑉ℎ
𝑘𝐵𝑇

    (2) 

where η is the viscosity of the medium where the nanoparticles dispersed 

in, Vh is the hydrodynamic volume of the nanoparticles.  

 Both the relaxation mechanisms contribute independently on the 

magnetization of colloidal magnetic nanoparticles subjected to alternating 

magnetic field. The combined relaxation time is called effective relaxation 

time, 𝜏𝑒𝑓𝑓, is given by 

𝜏𝑒𝑓𝑓 =
𝜏𝐵𝜏𝑁
𝜏𝐵+𝜏𝑁

    (3) 

 As seen from equation the shorter relaxation time controls the 

effective time of reversal. This means that reversal occurs by the process 

with the smallest relaxation time constant (Dutz & Hergt, 2013). Néel 

relaxation emerged as a dominant process for smaller particle sizes, while 

Brown relaxation time dominates in case of larger in low viscous media 

(Deatsch & Evans, 2014). The contribution of Brown relaxation might be 

considered insignificant when magnetic particles are injected into tissue 

(Dutz, Kettering, Hilger, Müller, & Zeisberger, 2011).  
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 Regardless of heating origin, measuring the amount of induced heat 

via loss and relaxation mechanisms is essential in order to compare the 

efficiency of magnetic nanoparticles. The heating efficiency in magnetic 

hyperthermia is presented by the specific loss power (SLP), also denoted 

as specific absorption rate (SAR). In non-adiabatic condition, the value of 

SLP can be experimentally calculated by determining the initial rate of 

temperature increase of a system under alternating magnetic field. SLP can 

be expressed in terms of Watts/gram (W/g) by the following equation, 

𝑆𝐿𝑃 = 𝐶
𝑚𝑠

𝑚𝑚

𝛥𝑇

𝛥𝑡
    (4) 

where C is the volume specific heat capacity of the sample solution, 𝑚𝑠  

is the mass of solution, 𝑚𝑚 is the mass of magnetic material in the solution 

and 𝛥𝑇 𝛥𝑡Τ  is the initial slope of the temperature versus time dependence. 

SLP can also be defined according to the magnetic field frequency and 

amplitude by the following equation, 

𝑆𝐿𝑃ሺ𝑓, 𝐻ሻ =
𝑃ሺ𝑓,𝐻ሻ

𝜌
=

𝜋𝜇0𝜒
′′𝐻2𝑓

𝜌
   (5) 

where 𝜌 is the mass density of the magnetic material. H, f, 𝜇0 and 𝜒′′ are 

the amplitude of magnetic field, frequency of the magnetic field, magnetic 

permeability of free space and complex part of the susceptibility, 

respectively.  

 For an efficient magnetic hyperthermia SLP value is desired to be as 

large as possible. The SLP is drastically depends on structural properties 

of magnetic nanoparticles, such as particle size, shape and composition. In 

addition to structural properties of magnetic nanoparticles, the 

environmental properties include the viscosity of medium, frequency and 

amplitude of the external magnetic field can significantly alter the SLP 

during the magnetic hyperthermia experiments. In order to get an improved 

SLP, all parameters have to be optimized. There is found a large number 

of publications on optimizing the parameters for efficient hyperthermia 

related to SLP in the literature (Halgamuge & Song, 2020; Kwon et al., 

2016; Liu et al., 2012; Sohn & Victora, 2010). The studies on this context 

related to biological issues mainly include synthesis and characterizations 

of magnetic nanoparticles in-vitro and in-vivo conditions.   

 5. IN-VITRO AND IN-VIVO STUDIES IN MAGNETIC 

HYPERTHERMIA 

 In magnetic hyperthermia research, the studies include the 

characterization of physical, chemical and biological properties of the 

nanoparticles. These characterizations are studied by in-vitro and in-vivo 

methods which are crucial to translate the new cancer diagnosis and 

treatment methods into routine clinical applications. 
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 5.1. IN-VITRO STUDIES 

 In-vitro studies are those of performed in a controlled environment 

(such as a test tubes or laboratory dish) that simulates the real organs of 

living organisms. Fluidic, hydrogel and polymeric media, cell cultures and 

dead tissue are used as in-vitro environments. In-vitro studies are important 

to provide a valuable insight for future in-vivo studies.  

 In-vitro experimental analysis in magnetic hyperthermia research is 

essential to test the suitability for biological media of the nanoparticles. 

Besides providing a valuable knowledge about the biological suitability 

and efficiency of the nanoparticles, in-vitro experiments also provide a 

good insight about the other environmental parameters (such as the 

frequency and amplitude of applied magnetic field, viscosity of the 

medium and alternating magnetic field exposure time) which are necessary 

to be optimized for in-vivo tests of magnetic hyperthermia measurements. 

 In a much recent study, Minaei et al (2019), synthesized TMZ 

(temozolomide)-loaded FA (folic acid ligand)-conjugated magnetite 

triblock copolymers to investigate the in-vitro anti-cancer efficacy of these 

multifunctional nanoparticles combining magnetic hyperthermia in 

glioblastoma cancer cells. A high SAR values of 530 W/g was found from 

magnetic hyperthermia measurements. In-vitro results showed that TMZ-

MNP-FA are very promising for localized combined chemo-hyperthermia. 

There can be found several publications about in-vitro studies on magnetic 

hyperthermia (Bhardwaj, Parekh, & Jain, 2020; Gkanas, 2013; Iacovita et 

al., 2020; Ramirez-Nuñez, Jimenez-Garcia, Goya, Sanz, & Santoyo-

Salazar, 2018). In-vitro studies are key initial step of a clinical experiment 

to test a hypothesis. In the case of positive results from these studies, 

researchers move on to in-vivo experiments before clinical tests on 

humans. 

 5.2. IN-VIVO STUDIES 

   In-vivo refers to a medical experiment is done in the living organ or 

whole body. The animal models, such as mice, rats and rodents are used 

are used as in-vivo environments.  

 Very recently, Rego et al (2019) synthesized stable aminosilane-

coated superparamagnetic iron oxide nanoparticles to evaluate the 

potential of magnetic hyperthermia in glioblastoma tumor model. First, the 

heating potential of the nanoparticles through specific absorption rate value 

were investigated under different frequencies and intensities of alternating 

magnetic field in-vitro to evaluate the best conditions of frequency and 

intensity of alternating magnetic field. Then, magnetic hyperthermia 

measurements were performed under these best conditions. The cell death 

of 52.0 % (in-vitro) and 32.8 % (in-vivo) and a high SAR of 195 W/g was 
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achieved. These result indicated that magnetic hyperthermia using 

aminosilane-coated superparamagnetic iron oxide nanoparticles is 

promising for the therapeutical process of glioblastoma tumors in animal 

model.  There can be found several publications about in-vivo studies on 

magnetic hyperthermia (Y. Chen et al., 2014; Ha et al., 2019; Kim, Kim, 

Kim, Shim, & Lee, 2007)  

 6. CONCLUSIONS AND FUTURE PERSPECTIVES 

 Hyperthermia is a very successful cancer treatment method. This 

method can be employed alone or combined with conventional therapies 

to enhance its efficacy. Remarkably, hyperthermia has been demonstrated 

to provide numerous advantages when combined with chemotherapy 

and/or radiotherapy in nano platforms. The combined therapies which have 

more advantages and superiority compared to conventional therapies 

appear as innovative cancer treatments of recent years.  

 Although all the advantages of combined therapy there is still no 

routine in clinical practice of cancer treatments by using them. Actually, 

there are several drawbacks that must be overcome in order to translate 

these new therapies into a routine clinical cancer diagnosis and treatment. 

Difficulty in temperature control and temperature measurement at cell 

level, uncontrollable temperature release on healthy cells, non-uniform 

heat dissipation through the tumor region, lack of non-invasive 

transportation of nanoparticles to tumor region, small penetration depth 

and low solubility and toxicity of therapeutic drugs are the main problems 

that still need to be solved in current cancer therapy treatments.   

 The use of magnetic nanoparticles in hyperthermia as heat agents 

provide a more efficient cancer therapy modality while eliminating the 

aforementioned problems. The improvements that can be achieved in 

cancer treatments by incorporating magnetic nanoparticles into 

hyperthermia are as follows:  

a) The less complications and side effects compared to conventional 

modalities. 

b) The temperature control on tumor region by using self-regulating 

magnetic nanoparticles,   

c) The accessibility to deeper tissues with higher penetration, 

d) The successive of more efficient heating of magnetic hyperthermia 

by precise control of size and morphology of magnetic 

nanoparticles,  

e) The transportation of therapeutic drugs non-invasively by magnetic 

nanoparticles, 
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f) The controllable releasing of therapeutic drugs using porous 

magnetic nanoparticles, 

g) The easy functionalization properties of magnetic nanoparticles 

allow the development of multifaceted approach to cancer treatment. 
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INTRODUCTION 

Peroxidases (POD) (E.C. 1.11.1.7) is an enzyme belonging to the 

oxidoreductase family, and they are known as heme proteins containing 

ferriprotoporphyrin IX as a prosthetic group. The peroxidase enzyme 

catalyses numerous reactions like oxidation of various organic and 

inorganic compounds with a tendency to give electrons, along with 

reduction of such peroxides as hydrogen that accepts these electrons 

(Adams, 1978; Whitaker, 1994).  

POD is known to catalyse dehydrogenation of many aromatic 

molecules such as hydroquinone and phenol, among which are pyrogallol, 

2-toluidine, guaiacol, leucomalachite green, 2-cresol, propionyl 

promazine, and some azo dye derivatives (Pütter and Becker, 1987; Van-

Huytstee, 1987). Plant peroxidases can achieve oxidation of a number of 

phenolic molecules, such as catechin, guaiacol, chlorogenic acid, and 

catechol against peroxide (Onsa, et al., 2004).                                                                                                                           

Peroxidases constitute one of the main enzyme groups used in 

industrial production and applications. The large number of pollutants 

stemming from industrial applications pose a menace not only to the 

environment but also to ecological balance as well. Peroxidases are also 

among the enzymes utilised effectively in preventing environmental 

pollution. Some other applications for which peroxidases are widely used 

are removal of phenolic compounds (Hamid and Rehman, 2009), 

detoxification of industrial dyes (Chivukula, et al., 1995), biosensor 

construction (Jia, et al., 2002), pulp industry (Khalid, et al., 2009), 

analytical kits, and diagnostic kits (Heller and Vreeke, 1997; Agostini, et 

al., 2002), degradation of chlorinated insecticides (Quintero, et al., 2008), 

and organic polymerization reactions (Liu, et al., 1999). 

Since the peroxidase enzyme is eligible of industrial use, new 

sources are constantly being searched for the purification of this enzyme. 

Among the sources studied or this enzyme up to the present time have been 

Kudret Pomegranate (Momordica charantia Descourt) (Altınkaynak, et 
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al., 2020), Onion Roots (Öztekin, 2020), lettuce (Lactuca sativa L.) (Hu, 

et al., 2012), coarse lemon (Citrus jambhiri) (Mohamed, et al., 2008), 

turnip (Brassica rapa) (Motamed, et al., 2009), and zucchini (Cucurbita 

pepo L.) (Wang, et al., 2019). In this study, zeferan, a local peach variety 

of Iğdır province, was used for the first time as a source of peroxidase. 

Many pollutants attributable to various industrial applications pose a 

serious menace to the environment. The fact that peroxidase enzyme is 

capable of significantly reducing environmental pollution makes it 

essential that this enzyme should be obtained from as many sources as 

possible. In this study, peroxidase from zeferan peach variety was partially 

purified and biochemical properties such as optimum pH, optimum 

temperature Km and Vmax, thermal stability, pH stability were 

investigated. 

MATERIAL AND METHODS 

CHEMICALS USED 

Guaiacol, hydrogen peroxide (H2O2, 30%), Sodium acetate 

(NaCH3COO), potassium dihydrogen phosphate (KH2PO4) and Tris-HCl 

were all obtained from Sigma-Aldrich Chemie GmbH Steinheim, 

Germany. The present study used zeferan, a local peach variety occurring 

in Iğdır central Melekli neighbourhood was used as the source of 

peroxidase enzyme. The Zeferan peach was collected in september and 

preserved at -20 °C. 

PREPARATION OF RAW ENZYME EXTRACT FROM 

ZEFERAN PEACH (PRUNUS PERSICA L.) AND PARTIAL 

PURIFICATION  

Zeferan (Prunus persica L.) was collected from the peach orchard 

in Iğdır, Turkey and stored at -20 °C until the present study was launched. 

35 grams of sample were taken while preparing the enzyme solution. The 

samples were freeze-thawed and pounded in a mortar. Afterwards, 70 mL 

of 50 mM phosphate (pH 6.0) buffer was added (Aydemir, 2004). The 

sample was filtered through a 4-layered cheesecloth and the filtrate 

obtained was centrifuged at 4 ° C, 10,000 rpm for 30 minutes. The 

supernatant obtained was used as the crude enzyme extract. 

To the obtained supernatant, cold acetone with the same volume was 

added by stirring slowly in an ice bath. The enzyme extract was centrifuged 

at 4 °C for 30 minutes at 10,000 rpm after having been left at 4 °C 

overnight, following which the supernatant part was discarded and the 

precipitate were dissolved in 15 mL of pH 6.0 phosphate buffer (Özen et 

al., 2004). 
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DETERMINATION OF PEROXIDASE ACTIVITY 

Peroxidase activity determination is based on the principle of 

measuring the increase in absorbance at 470 nm in 3 minutes of the colored 

product formed by the oxidation of guaiacol (45 mM) known as the 

chromogenic substrate in the presence of H2O2 (22.5 mM) (Sisecioglu et 

al. 2010). Enzyme activity was calculated according to Kalin et al., 2014  

(Kalin, et al., 2014). 

DETERMINATION OF PROTEIN 

Protein determination was achieved the Bradford method using 

bovine albumin (BSA) as the standard protein. The measurements were 

performed at 595 nm via the UV-vis spectrophotometer (Bradford, 1976). 

OPTIMUM pH 

Optimum pH for POD was examined separate activity 

measurements using 50 mM glisin-HCl (pH 3,0), 50 mM sodyum asetat 

(pH 4,0 ve 5,0), 50 mM fosfat (pH 6,0 ve 7,0) and 50 mM Tris- HCI (pH 

8,0 ve 9,0) buffers. A pH -% relative activity graphic was plotted to present 

results. The pH with the highest activity was determined as the optimum 

pH. 

OPTIMUM TEMPERATURE 

In order to determine the optimum temperature of POD, the enzyme 

activity was determined at different temperatures varying between 10-70° 

C with intervals of 10 °C by means of the guaiacol / H2O2 substrate (Kalin, 

et al., 2014). A temperature-% relative activity graphic was drawn to 

present the results. The temperature with the highest activity was 

determined as the optimum temperature. 

DETERMINATION OF Km AND Vmax VALUES 

To determine the affinity of POD with the guaiacol substrate, 

peroxidase activity was measured at 1.67-20 mM substrate concentration, 

keeping the H2O2 concentration constant. Lineweaver-Burk graphics were 

drawn by calculating 1/V and 1/[S] values from the results. Based on this 

graphic, the Km and Vmax values of guaiacol were determined 

(Lineweaver and Burk, 1934). 

DETERMINATION OF pH STABILITY 

The pH stability of zeferan peroxidase were determine using 50 mM 

glycine-HCl (pH 3.0), 50 mM sodium acetate (pH 4.0 and 5.0), 50 mM 

phosphate (pH 6.0 and 7.0), and 50 mM Tris-HCl (pH 8.0) buffers. 1 mL 

of buffer solutions (for each pH):1 ml of the enzyme solution were kept at 

+ 4 ° C by being mixed. Activity measurements were made for 5 days. The 
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residual activity (%)-time graph was drawn from the obtained results 

(Kalın, 2012). 

DETERMINATION OF THERMAL STABILITY 

To determine the thermal stability of POD, the enzyme was 

incubated for 1 hour at 4 ° C and 30 ° C, with the intervals being 20 

minutes. The activity determination was achieved under optimal conditions 

by rapidly cooling the enzyme thanks to an ice bath for 5 minutes. The 

activity of the enzyme that had not been exposed to any previous treatment 

was acknowledged to be 100%. Finally, the residual activity (%) of the 

incubated enzymes was calculated (Kolcuoğlu, 2018). 

RESULTS AND DISCUSSION 

Previous studies have already elucidated the reaction mechanism by 

which guaiacol, which is used as a peroxidase substrate, is oxidized. This 

reaction mechanism has revealed that coloured 3,3'-dimethoxy-4,4'-

biphenoquinone compound forms as a result of oxidation of guaiacol 

(Doerge, et al., 1997). 

Among the sources studied or this enzyme up to the present time 

have been Kudret Pomegranate (Momordica charantia Descourt) 

(Altınkaynak, et al., 2020), Onion Roots (Öztekin, 2020), lettuce (Lactuca 

sativa L.) (Hu, et al., 2012), coarse lemon (Citrus jambhiri) (Mohamed, et 

al., 2008), turnip (Brassica rapa) (Motamed, et al., 2009), and zucchini 

(Cucurbita pepo L.) (Wang, et al., 2019). 

The peroxidase enzyme was partially purified from Zeferan Peach 

by 1.75-fold via the cold acetone precipitation (Table 1). In a study, the 

peroxidase enzyme was purified as an intermediate step from Turkish 

black radish (Raphanus sativus L.) 1.358 fold with ammonium sulphate 

precipitation and characterized (Şisecioğlu, et al., 2010), another study the 

peroxidase enzyme from A. pallidus (P26) was 4,95 fold partially purified 

as an intermediate step (Taslimi, 2013). 

Table 1. Steps of Purification of The Peroxidase From Zeferan Peach 

(Prunus Persica L.) 

Purification 

steps 

Volume 

(mL) 

Total 

activity 

(EU/mL.

min) 

Total 

protein 

(mg) 

Specific 

activity 

(U/mg 

protein) 

Yield 

(%) 

Purification 

fold 

Crude 

Extract 

70 7,4907 5,6476 1,33 100 1 

Acetone 

Precipitati

on 

15 1,76715 0,7618

5 

2,32 23,59 1,75 

 



37 

OPTIMUM pH 

To determine the optimum pH of peroxidase, the activity 

measurements were achieved separately via different buffers whose pH 

varied from 3.0 to 9.0, for which a pH -% relative activity graphic was 

drawn afterwards. As a result, the peroxidase showed the highest activity 

at pH 6.0 (Figure 1). The optimum pH values of peroxidase purified from 

chard (Beta Vulgaris L. var. cicla) (Yaman, 2018), black radish (Raphanus 

sativus L.) (Şisecioğlu, et al., 2010), and turnip roots (Kalin, et al., 2014) 

were found to be 6.0, 6.0, and 6.5, respectively. Previous studies on the 

POD enzyme was found the optimum pH values to usually vary from 5.0 

to 7.5 (Gülçin and Yıldırım, 2005; Kumar, et al., 2011; Köksal and Gülçin, 

2008; Lavery, et al., 2010; Kalin et al., 2014). 

 

 

Figure 1. Optimum pH plot of zeferan peach peroxidase 

 

OPTIMUM TEMPERATURE 

To determine the optimum temperature value of the POD, activity 

determinations were achieved at 10-70 °C, with the intervals being 10 

degrees. Through the data obtained, a temperature-% relative activity 

graph was drawn and the optimum temperature was found  to be 30 °C 

(Figure 2). Peroxidase 40, 50, 60 °C was still found to retain 75% of its 

activity. This situation is important in terms of bringing this enzyme to the 

industry. The optimum temperatures of peroxidase from Turkish black 

radish and turnip roots are 30 °C (Kalin, et al., 2014). Previous studies into 

the POD enzyme have determined the optimum temperature value to 

generally vary between 30 and 50 °C (Gülçin and Yıldırım, 2005; Kumar, 

et al., 2011; Şisecioğlu, et al., 2010; Kalın, 2018). Peroxidase 40, 50, 60 °C 

was still found to retain 75% of its activity. This situation is important in 

terms of bringing this enzyme to the industry. 
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Figure 2. Optimum temperature plot of zeferan peach peroxidase 

 

DETERMINATION OF Km and Vmax VALUES 

The Km and Vmax values were determined for the guaiacol 

substrate of the Zeferan POD. For this purpose, the activity measurement 

was achieved in 6 different concentrations of guaiacol substrate between 

1.67 and 20 mM under optimum conditions. Km and Vmax values for POD 

from Zeferan peach were calculated from the linear regression analysis of 

1/V versus1/[S]. The Km and Vmax values of Zerefan POD were found to 

be 2.8 mM and 1.49 EU/mL.min, respectively (Figure 3). The Km and 

Vmax values of peroxidase purified from Turkish black radish (Raphanus 

sativus L.)(Kalin, et al., 2014), turnip (Kalin, et al., 2014) and onion roots 

(Öztekin, 2020)  were found to be (24.88 mM and 3.23 EU/mL.min), (4.09 

mM and 0.797 EU/mL.min) and (3.44 mM and 0.32 EU/mL.min), 

respectively. It was observed that the affinity to the guaiakol substrate of 

the peroxidase enzyme obtained from different sources could exhibit 

variations. 
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Figure 3. Lineweaver-Burk graph for zeferan peach peroxidase in the 

presence of guaiacol 

DETERMINATION OF pH STABILITY 

The pH stability of the POD was detected at 4 °C in the buffer 

solutions of between pH 3.0 and 8.0. After 24-h incubation at range pH 3.0 

and 8.0 the POD residual activity was calculated above 85% (Figure 4). 

The POD activity was remained 68,05%, 63,23% and 62,83 after even 96-

h incubation at pH 6.0, 7.0 and pH 8.0, respectively (Figure 4). Based on 

its pH values, the enzyme was observed to have exhibited different 

activities at different time intervals. High activity of peroxidase enzyme at 

pH 6.0, 7.0 and pH 8.0 is important for the usability of this enzyme. Similar 

results have also been reported in the literature (Şişecioğlu, et al., 2010; 

Erol, 2019). 

Figure 4. pH Stability of zeferan peach peroxidase 
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DETERMINATION OF THERMAL STABILITY 

To determine the thermal stability of the zeferan peroxidase, the 

enzyme was incubated for one hour at 4 °C and 30 °C, respectively with 

intervals of 20 minutes. The activity determinations were achieved under 

optimal conditions through a rapid cooling in an ice bath for 5 minutes. 

The activity of the enzyme before any prior treatment was accepted to be 

100%, and the percentage of residual activities of the incubated enzymes 

were calculated accordingly (Figure 5). The enzyme was observed to have 

maintained 88% and 78% of its activities after one hour of incubation at 4 

°C and 30 °C, respectively (Figure 5). The good thermal stability of the 

peroxidase enzyme may allow the enzyme to be used for a long time at 

these temperatures. The thermal stability of horseradish peroxidase (HRP) 

was incubated at 20 °C - 50 °C for one hour, as a result of which the enzyme 

showed different activities at different temperatures (Erol, 2019). 

 

Figure 5. Thermal stability of zeferan peach peroxidase at  4 °C and 30°C 

CONCLUSION 

The peroxidase enzyme is a commercial enzyme capable of 

industrial use, new sources are continually being sought for purification of 

this enzyme. It is a fact that the enzymes utilized in many areas of industry 

have proved to be rather costly. For the sake of reducing this cost, 

investigations into cheaper enzyme production methods and sources are 

still in progress. The present studies, the peroxidase enzyme from zeferan, 

a local peach variety of Iğdır, was partially purified by 1.75 fold and 

characterized for the first time in the literature. Peroxidase partial purified 

from Zeferan peach has demonstrated high thermal and pH stability. The 

values obtained as a result of these characterization processes show that 

zeferan peroxidase, as an inexpensive enzyme source, can be purified by 

further purification techniques and brought to the industry by 

immobilization processes. 
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1. INTRODUCTION 

Population and income growth are the main factors causing the 

increase in primary energy consumption in the world. It is predicted that 

the population growth will significantly affect the global energy demand 

increase due to the developing industry and urbanization (Republic of 

Turkey Ministry of Energy and Natural Resources, 2017). 

According to the scenarios, although the share of fossil fuels will 

decrease relatively in the period until 2040, these fuels will continue to be 

the dominant sources. The share of nuclear energy in primary energy 

resources is predicted to increase, and the share of renewable energy 

resources in 2040 is expected to be 16.1%. According to the current 

policies scenario, global electricity demand is expected to increase by 80% 

until 2040, with an annual average of 2.3%. Renewable resources are the 

energy resources with the fastest growth rate, with an annual average 

growth of 9.8%. Nuclear power will have an annual average growth rate of 

2.3% and hydroelectricity an annual average growth rate of 1.8%. The 

growth rate of these three sources is more than the growth rate of total 

primary energy. The distribution of the world's primary energy demand by 

resources is given in Figure 1. 

mailto:inansuleyman@gmail.com
mailto:berkancetinkaya@gmail.com
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Figure 1: Distribution of World Primary Energy Demand by 

Resources (https://seekingalpha.com/article/4083393-world-energy-

2017minus-2050-annual-report) 

According to January 2020 data of the International Atomic Energy 

Agency (IAEA), there are 447 nuclear reactors operating in 30 countries. 

A total of 52 nuclear power plants are currently under construction in 19 

countries including Turkey. 10% of the electricity production in the world 

is provided by nuclear energy (IAEA, 2019). As seen in Table 1, USA, 

which has the most nuclear power plants in the world with 96 power plants, 

obtained 19.3% of its electricity production from nuclear energy in 2018. 

Russia, South Korea and France provide 17.9%, 23.7% and 71.7% of their 

electricity generation from nuclear energy, respectively. China, which has 

48 nuclear power plants, has started the construction of 10 new nuclear 

power plants to meet the electricity demand to be realized in the coming 

years (IAEA, 2020). 

Table 1: The Number of Nuclear Power Plants in Operation and Under 

Construction in the World and the Share of Nuclear Energy in Electricity 

Generation of Countries (IAEA, 2020) 

Country Number of Nuclear 

Power Plants in 

Operation * 

Number of Power 

Plants Under 

Construction * 

Share of Nuclear 

Energy in 

Electricity 

Generation (%) ** 

USA 96  2  19.3%  

France  58  1  71.7%  

China 48  10  4.2%  

https://seekingalpha.com/article/4083393-world-energy-2017minus-2050-annual-report
https://seekingalpha.com/article/4083393-world-energy-2017minus-2050-annual-report
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*IAEA as of January 16, 2020 
**IAEA 2018 data 

 

In the Electricity Energy Market and Supply Security Strategy 

Document, which was prepared to ensure a competitive electricity market 

and energy supply security, the goal of including nuclear energy in the 

supply portfolio is also included in order to increase fuel diversity. 

(Republic of Turkey Ministry of Energy and Natural Resources, 2017). 

 

Russia  38  4  17.9%  

Japan 37  2  6.2%  

South Korea  24  4  23.7%  

India 22  7  3.1%  

Canada  19  -  14.9%  

United 

Kingdom 

15  1  17.7%  

Ukraine 15  2  53.0%  

Belgium 7  -  39.0%  

Spain 7  -  20.4%  

Sweeden 7 -  40.3%  

Germany  6 -  11.7%  

Czechia  6  -  34.5%  

Pakistan  5  2  6.8%  

Switzerland 4  -  37.7%  

Finland  4  1  32.4%  

Hungary  4  -  50.6%  

Slovakia  4  2  55.0%  

Argentina 3  1  4.7%  

Brazil  2  1  2.8%  

Bulgaria  2  -  34.7%  

Mexico 2  -  5.3%  

Romania 2  -  17.2%  

South 

Africa  

2  -  4.7%  

Armenia  1  -  25.6%  

Iran  1  1  2.1%  

Netherlands 1  - 3.0%  

Slovenia 1  -  35.9%  

UAE -  4  -  

Bangladesh - 2 - 

Belarus  -  2  -  

Turkey - 1 - 

TOTAL 447  52   
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Figure 2: The Importance of Nuclear Power Plants for Turkey 

(Republic of Turkey Ministry of Energy and Natural Resources, 2017) 

As of the end of 2016, the share of natural gas in electricity 

generation is 32.1% and the share of coal is 33.7%. As stated in the Electric 

Energy Market and Supply Security Strategy Document published by the 

Supreme Planning Council in 2009, our country plans to reduce the share 

of natural gas in electricity production to less than 30% in 2023 and accepts 

nuclear energy as an obligation, not an option, in terms of reducing energy 

imports in ensuring our energy supply security.  

The uranium exploration studies carried out in many fields in our 

country could not be carried out with sufficient sensitivity due to various 

reasons. The grade and apparent amount of uranium deposits found as a 

result of the searches made so far are given in Table 2. 

Table 2: Turkey Uranium Deposits (General Directorate of Mineral 

Research and Exploration, 2017) 

Region Grade(%) U3O8  ton 

Salihli-Köprübaşı 0.04-0.07 3.487 

Uşak-Eşme-Fakılı 0.05 490 

Aydın-Söke-Küçükçavdar 0.04 208 

Aydın-Söke-Demirtepe 0.08 1.729 

Yozgat-Sorgun 0.1 6.700 

  Total: 12.614 tons 

U3O8 
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Our uranium ores found by Mineral Research and Exploration 

(MTA) total approximately 12.614 tons of uranium. There are three types 

of ores in Salihli Köprübaşı. These; Kasar, Ecinnitaş and Taşharman. In 

1980, 1,300 kg of yellow cake was produced from 1,000 tons of uranium 

ore with 0.05% U3O8 grade in Kasar and natural uranium fuel pellets were 

made from this yellow cake in MTA laboratories. After 1980, pilot nuclear 

fuel production studies continued at TAEK Çekmece Nuclear Research 

and Training Center. Since the found areas were transferred to Etibank, 

MTA bought the land again in April 2010 and started work in Köprübaşı. 

Powder metallurgy procedures for the production of uranium metal 

oxide, carbide and nitride fuels are very old. These procedures have been 

successfully used industrially for the production of UO2, (U, Pu)O2, (U, 

Pu)C pellets. Although the production of UO2 pellets using powder 

metallurgy is a well-known procedure, some of the problems encountered 

are listed below: 

 Processing of large quantities of highly toxic radioactive powders, 

 Presence of many mechanical steps in fuel fabrication, 

 Difficulties in remote control of the process, 

 Problems caused by the doses exposed as a result of 241Am 

accumulation and aging of the production facility. 

Considering all these, problems have arisen in the fabrication of 

nuclear fuels using conventional powder metallurgy processes due to cost 

increases and technological difficulties. In the early 60's, studies were 

carried out to develop solution-based fuel fabrication processes in the 

production of Th-233U fuels. Coated fuel microspheres (UC2, UThC2) were 

produced using solution / sol based procedures called the sol-gel process 

(Vaidya, 2002). 

The sol-gel method is based on the conversion of a sol (even a true 

solution) into a hydroxide gel by dispersing it into an organic solvent. 

Many gel preparation methods are used in the synthesis of ceramics, 

catalysts and inorganic sorbents. The common point of all these methods 

is that they consist of suitable process components to bind colloidal 

particles together to form the gel structure. These processes are commonly 

referred to as "sol-gel" processes and their chemistry is quite complex. Gels 

are generally hydrated metal oxides. The gelation process is divided into 

two as external gelation or internal gelation. In various sol-gel methods 

developed, droplets of organic polymer solutions or sols are gelled with 

ammonia. This process usually takes place by mass transfer from ammonia 

solution or vapor (Tel, 1997). 

The sol-gel process has been used in nuclear fuel fabrication since 

the 1960s. Some applications are given below: 
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 Synthesis of ultra fine particles or microspheres for liquid fuels, 

 Synthesis of sol-gel particles for vibratory compression,  

 Synthesis of compressible and sintered sol-gel particles for pellet 

type fuel, 

 Production of coated fuel core microspheres for HTGRs, 

 Creation of microspheres for sphere-pack fuel. 

 

In the internal gelation sol-gel process, the cooled feed solution 

containing metal nitrate, hexamethylenetetramine (HMTA) and urea is 

heated, releases ammonia, and a hydrated gel is formed. The gels formed 

by the internal gelation technique become metal oxides by drying and 

heating processes. The microspheres obtained show homogeneous size 

distribution and perfect sphericity. Unlike external gelation, the internal 

gelation method enables spheres with smooth surfaces without cracking. 

Also, since solid gels are formed from aqueous solutions during internal 

gelation, the final products exhibit a homogeneous distribution of 

dissolved elements in the feed solution. Such homogeneous products are 

desired for mixed oxide fuel pellets that can be pressed from microspheres 

with low compressive strength (Katalenich, 2017). 

In the study, it is aimed to obtain high homogeneity and density 

UO3.NH3.H2O spheres by sol-gel technique with starting chemicals 

UO2(NO3)2.6H2O, CO(NH2)2 and C6H12N4. After aging and drying, 

characterization studies were carried out. 

2. EXPERIMENTAL 

2.1 General Process 

In the study, firstly the nitrate solution of uranium was prepared in 

the production of UO3.NH3.H2O spheres based on the sol-gel method of 

nuclear fuel production. UO3.NH3.H2O spheres were obtained by starting 

from the nitrate solution and going through the stages shown in the process 

flow chart given in Figure 3. The characterization studies of microspheres 

were performed by TG/DTA and BET surface area and porosity analysis. 
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Figure 3: Flow Chart of the Study 

2.2 Preparation of Sols 

The synthesis of gel beads is based on the formation of cold sol 

droplets in the organic disperser and then the decomposition of the HMTA 

in the structure to release ammonia when heated. This process is commonly 

referred to as the "internal gelation process" (Haas et al., 1983). The release 

of homogeneous ammonia during the gelation reaction allows uniform 

precipitation of metal oxides without deterioration due to shell formation 

or tensile forces. The hydrolytic decomposition reaction of HMTA in 

acidic medium is shown in Equation 1. 

(𝐶𝐻2)6𝑁4 + 6𝐻2𝑂 + 4𝐻+  ⇌ 4𝑁𝐻4
+ + 6𝐻𝐶𝐻𝑂        (1) 

 

 
Preparation of Source Sols 

 
Droplet Formation 

 
Gelation 

 
Aging 

 
Drying 

 

 
Characterization 

Metal 

Solution 



52 

Hydrogen ions are neutralized by the degradation of HMTA and 

thus, with the increase in the pH of the aqueous solution, hydrous metal 

oxides can precipitate or metal oxide sols can turn into gel form. The 

kinetics and direction of the reaction regarding the decomposition of 

HMTA given in Equation 1 depends on the temperature. The feed solutions 

to be used for the synthesis of the beads by the internal gelation process 

must have a long gelation time at low temperature to prevent premature 

gelation in the injection system, and a short gelation time at high 

temperatures to quickly harden the gel beads. For many metals, gelation at 

low temperatures can be delayed or prevented by adding urea to the 

complex (Equation 2). 

 

M+n + x urea ⇌ 𝑀(urea)x
+n    (2) 

 

The dissolution of uranyl nitrate hexahydrate in water and the 

precipitation reaction of the formed uranyl with ammonia are given in 

Equation 3 and Equation 4. 

 

𝑈𝑂2(𝑁𝑂3)2. 6𝐻2𝑂 +  𝐻2𝑂 ⇌  𝑈𝑂2
2+ + 2𝑁𝑂3

− + 7𝐻2𝑂  (3)  

 

𝑈𝑂2
2+ +  𝑁𝐻4

+ ⇌  𝑈𝑂3. 𝑁𝐻3. 𝐻2𝑂    (4)  

 
Ammonium diuranate (ADU), which precipitates by the reaction of 

uranyl ion with ammonia, is actually a mixture of ammonium uranate 

compounds. ADU with four different crystal structures was determined. 

These;  

 
 NH3/U mol ratio 

6UO3.12H2O 0 

6UO3.2NH3.10H2O 0.33 

6UO3.3NH3.9H2O 0.50 

6UO3.4NH3.8H2O 0.66 

 

2.3 Droplet Formation and Gelation 

The droplet forming system is important in obtaining the desired 

diameter and uniform spheres. A 1 mL injector tip was used to create 

droplets and the prepared sols were sent to the spiral gelation column by a 

peristaltic pump. In gelation, chooing an organic solvent with a high 

surface tension and a small density difference with sol is a key factor. 

Therefore, CCl4 was chosen as the gelling medium. The mechanism shown 

in Figure 4 consists of jacketed heater, condenser, cooled circulation water 
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bath, peristaltic pumps, spiral gelation column and connections. The 

prepared sols were given to the gelation system and oxide gel spheres were 

obtained. 

 

Figure 4: Internal Gelation Sol-Gel Experiment Setup 

2.4 Aging and Drying 

The purpose of the aging process is to prevent the deterioration of 

spheres during drying. During aging, the spheres shrink a little. It is 

estimated that there is grain growth at this time. Therefore, uranium oxide 

gel spheres were kept in CCl4 boiling under reflux for 2 hours. The drying 

process was carried out in the oven at 60 °C for 48 hours and then in the 

vacuum oven at 60 °C for 72 hours. 

2.5 Characterization Studies 

2.5.1 Thermal Analysis 

TG/DTA analysis of UO3.NH3.H2O microspheres were carried out 

in two different atmospheres as N2 and O2 between room temperature and 

1300 °C. The spheres were analyzed at a gas flow rate of 20 mL/min for 

N2 and 200 mL/min for O2, at a heating rate of 10 °C/min. Alumina silicate 

crucible was used during the analysis. Mass loss versus temperature and 

potential difference values were recorded. 

2.5.2 BET Surface Area and BJH Porosity Analysis 

Surface area and porosity analysis of UO3.NH3.H2O spheres were 

performed by Micromeritics ASAP 2020 surface area and porosity 

analyzer. Firstly, the spheres were kept under vacuum at 100 °C and 

atmospheric gases and water vapor in the pores were removed. The BET 

surface area and porosity of the spheres were measured by nitrogen gas 

adsorption method at liquid nitrogen temperature. 
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3. RESULTS AND DISCUSSION 

3.1 Synthesis of UO3.NH3.H2O Microspheres 

From Equation 1, Equation 2, Equation 3 and Equation 4, it has been 

calculated that 2 moles of urea and 1.5 moles of HMTA are required for 1 

mol of uranium. UO3.NH3.H2O source sol was prepared with UO2 

(NO3)2.6H2O at 1 M metal concentration. Sol solution was prepared by 

dissolving 5.0283 g UO2(NO3)2.6H2O, 1.2026 g CO(NH2)2 and 2.0998 g 

C6H12N4 in 10 mL 0 °C deionized water. 

The gelation of the prepared sol solution was carried out by means 

of the experimental setup (Figure 4). The system consists of a jacketed 

heater, condenser, cooled circulation water bath, peristaltic pumps, spiral 

gelation column and connections. There was ~1 L of boiling CCl4 in the 

collection vessel under the condenser. Due to the low vapor pressure, CCl4 

was heated under the condenser, thus the loss of CCl4 by evaporation was 

prevented. CCl4 taken from the collection vessel by peristaltic pump passes 

through the spiral gelation column and was fed back to the collection 

vessel. The prepared source sol was sent to the spiral gelation column using 

a peristaltic pump. Due to surface tension forces, the sol solution injected 

into CCl4 took the spherical form. The column was kept under a constant 

temperature of 60 °C. While the spheres formed at the injection tip moved 

through the column, they reacted with ammonia released by the hydrolytic 

decomposition of HMTA due to the temperature and gelled in the form of 

UO3.NH3.H2O. The spherical gels moved on along the column and were 

collected in the collection vessel. 

3.2 Aging and Drying 

After precipitation, the gel spheres were allowed to age for 2 hours 

in boiling CCl4. Structural changes that occur during aging are of great 

importance during drying. The capillary pressure that occurs during drying 

increases in direct proportion to the interfacial area of the gel structure. If 

this interface area can be reduced by the grain growth process, the capillary 

pressure force generated during drying becomes less. With aging, harder 

and more durable gel structures can be formed. 

The synthesized spheres (Figure 5) were dried in the oven at 60 °C 

for 48 hours and in the vacuum oven at 60 °C for 72 hours.  
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Figure 5: Synthesized UO3.NH3.H2O Microspheres 

 

3.3 Characterization Studies 

3.3.1 Thermal Analysis 

TG/DTA analysis of synthesized UO3.NH3.H2O spheres were 

carried out in N2 and O2 atmospheres. TG/DTA curve of UO3.NH3.H2O 

microspheres in N2 atmosphere is shown in Figure 6. The hump seen 

around 100 °C in the TGA curve shows the removal of water and moisture 

in the structure. The corresponding endothermic peak is also seen in the 

DTA curve. With the decomposition of ammonium nitrate (NH4NO3), urea 

and HMTA and the removal of the crystal water in the structure, the mass 

loss reached ~70% around ~225 °C. It is thought that the endothermic peak 

around 600 °C indicates the conversion of UO3 to U3O8. The endothermic 

peak seen around ~1175 °C is attributed to the beginning of sintering. 

 

Figure 6: TG/DTA Curve of UO3.NH3.H2O Spheres in N2 Atmosphere 

TG/DTA curve of UO3.NH3.H2O microspheres in O2 atmosphere is 

shown in Figure 7. The hump seen around 100 °C in the TGA curve shows 
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the removal of water and moisture in the structure. With the decomposition 

of ammonium nitrate (NH4NO3), urea and HMTA and the removal of the 

crystal water in the structure, the mass loss reached ~50% around ~225 °C. 

On the other hand, the endothermic peak showing the conversion of UO3 

to U3O8 could not be observed in the DTA curve. The endothermic peak 

seen around ~1175 °C is attributed to the beginning of sintering. 

 

Figure 7: TG/DTA Curve of UO3.NH3.H2O Spheres in O2 Atmosphere 

3.3.2 BET Surface Area and BJH Porosity Analysis 

The BET surface area and BJH porosity analysis of UO3.NH3.H2O 

spheres dried at 60 °C were performed by nitrogen gas adsorption at liquid 

nitrogen temperature. BET surface area of the UO3.NH3.H2O spheres was 

found to be 0.89 m2/g. The total pore volume and the average pore diameter 

were obtained as 0.0040 cm3/g and 44.4 nm, respectively. 

4. CONCLUSION  

In the study, it was aimed to obtain high homogeneity and density 

UO3.NH3.H2O spheres by using sol-gel technique with starting chemicals 

UO2(NO3)2.6H2O, CO(NH2)2 and C6H12N4. Firstly, a nitrate solution of 

uranium with a metal concentration of 1 M was prepared in order to obtain 

durable sols suitable for gelation by utilizing the gelling property of 

uranium. Urea was added to this solution as a gelation retarding agent and 

HMTA as a source of ammonia, and the sol solution was prepared. The 

prepared sol solution was gelled in the form of spheres by using the 

injection tip and spiral gelation column. For this purpose, the assembly 

consisting of peristaltic pump, injection tip, spiral gelation column and 

connections was designed and manufactured. 

The droplet forming system is important in obtaining the desired 

diameter and uniform spheres. A 1 mL injector needle was used to create 



57 

droplets and the prepared sol was sent to the spiral gelation column using 

a peristaltic pump. Due to the surface tension forces, the sol solution 

injected into CCl4 gelled in spherical form. The column was kept under a 

constant temperature of 60 °C. While the spheres formed at the injection 

tip moved through the column, they reacted with the ammonia released by 

the hydrolytic decomposition of HMTA due to the heat and gelled in the 

form of UO3.NH3.H2O. The spherical gels were collected in the collection 

vessel by moving along the column. 

After aging and drying, characterization studies of gel spheres were 

performed by TG/DTA, BET surface area and BJH porosity analyzes. It is 

thought that water and moisture in the structure up to a temperature of 100 

°C and urea, unreacted HMTA and crystal water up to a temperature of 

~225 °C were removed from the structure. It is thought that the 

endothermic peak seen around 600 °C in UO3.NH3.H2O spheres heated in 

N2 atmosphere indicates the conversion of UO3 to U3O8. This peak was not 

observed in UO3.NH3.H2O spheres heated in O2 atmosphere. The 

endothermic peak seen around ~1175 °C in both atmospheres was 

attributed to the beginning of sintering. 

In our country, the construction of nuclear reactors has started in line 

with the approved agreements. As a result of the searches made by MTA, 

significant uranium reserves were found in our country and the searches 

are still ongoing. Undoubtedly, our country is obliged to carry out studies 

on UO2 fuel production and to provide knowledge within the framework 

of the evaluation of nuclear fuel resources. 

In the present study, UO3.NH3.H2O microspheres were successfully 

obtained using the internal sol-gel process. With further studies, it is 

planned to convert UO3.NH3.H2O spheres to UO2 form by H2 reduction. 
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INTRODUCTION 

  The studies concerning approximation by linear positive operators 

became strongly ingrained part of theory of approximation. In the current 

article, we will handle the sequences of integral operators, known in the 

literature as Gauss-Weierstrass operators, from another perspective. The 

classical form of these operators is described by the following formula: 

(𝑊𝑛𝑓)(𝑥) ≔ √
𝑛

4𝜋
∫ 𝑓(𝑥 + 𝑡)
∞

−∞
𝑒
−𝑛𝑡2

4 𝑑𝑡, 𝑥 ∈ ℝ, 𝑛 ∈ ℕ,          (1.1) 

 where the function f is enriched with some properties in order to 

obtain finite integral value. 

  The operators of type (1.1) have been investigated in several works, 

such as (see [1-5]). Here, for extensive information, we mention the 

monograph [6] and the references therein. 

 On the other hand, Kirov [7] defined the Bernstein pollynomials 

𝐵𝑛,𝑟 for 𝑟-times differentiable functions 𝑓 ∈ 𝐶𝑟([0,1]). In the same paper 

he showed that 𝐵𝑛,𝑟 have better approximation properties than classical 

Bernstein polynomials 𝐵𝑛. 

  The following operator whose analogous modification was defined 

in [8] is the Kirov-type modification of the Gauss-Weierstrass operators: 

(𝑊𝑛,𝑟𝑓)(𝑥) ≔ √
𝑛

4𝜋
∫ ∑

𝑓(𝑥+𝑡)

𝑗!
𝑟
𝑗=0

∞

−∞
(𝑡)𝑗𝑒

−𝑛𝑡2

4 𝑑𝑡,                   (1.2) 
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where 𝑥 ∈ ℝ, 𝑛 ∈ ℕ, 𝑟 ∈ ℕ0   ℕ0 ≔ ℕ∪ {0} and  𝑓: ℝ → ℝ ,  r-

times differentiable functions. Here, 𝑊𝑛,0(𝑓) denotes 𝑊𝑛(𝑓). 

Throughout this paper which is a continuation of [8], our aim is to 

obtain additional approximation properties of the operators (1.2) and in 

order to achieve this, we refer a new space containing all real valued 

functions whose exponential transformation is Lebesgue integrable with p-

th power over ℝ and call it the exponential weighted space. We examine 

the generalized Gauss-Weierstrass operators 𝑊𝑛,𝑟  for functions 𝑓 

belonging to the exponential weighted spaces 𝐿𝑞
𝑝(ℝ) and 𝐿𝑞

𝑝,𝑟(ℝ) whose 

definitions are given bellow. Using appropriate modulus of continuity 

defined on exponential weighted spaces, we obtain the order of 

convergence of the operators of type (1.2), the Voronovskaya-type theorem 

and quantitative results for these operators. 

    Following [1], let 𝑞 > 0 be a fixed number and  

𝜆𝑞(𝑥):= 𝑒
−𝑞𝑥2   , 𝑥 ∈ ℝ.                                        (1.3) 

For a fixed 1 ≤ 𝑝 ≤ ∞ and 𝑞 > 0  we denote by 𝐿𝑞
𝑝
 the set of all 

real-valued functions 𝑓 defined on ℝ for which the 𝑝-th power of 𝜆𝑞𝑓  is 

Lebesgue-integrable on ℝ if 1 ≤ 𝑝 < ∞ and 𝜆𝑞𝑓  is uniformly continuous 

and bounded on ℝ if 𝑝 = ∞.  Let the norm in 𝐿𝑞
𝑝

 be given by the formula: 

‖𝑓‖𝑝,𝑞 = ‖𝑓(. )‖𝑝,𝑞 ≔ {
(∫ |𝜆𝑞(𝑥)

∞

−∞
𝑓(𝑥)|𝑝𝑑𝑥)

1

𝑝, 𝑖𝑓  1 ≤ 𝑝 < ∞ ,

sup
𝑥∈𝑅

𝜆𝑞(𝑥)|𝑓(𝑥)| , 𝑖𝑓           𝑝 = ∞.
 (1.4) 

Also, let 𝑟 ∈ ℕ0 and 𝐿𝑞
𝑝,𝑟
= 𝐿𝑞

𝑝,𝑟(ℝ) be the class of all r-times 

differentiable functions 𝑓 ∈ 𝐿𝑞
𝑝
  with derivatives 𝑓(𝑘) ∈ 𝐿𝑞

𝑝
 , 1 ≤ 𝑘 ≤ 𝑟. 

The norm in 𝐿𝑞
𝑝,𝑟

 is given by (1.4). (𝐿𝑞
𝑝,0
≡ 𝐿𝑞

𝑝
) The spaces 𝐿𝑞

𝑝
 and 𝐿𝑞

𝑝,𝑟
 are 

called exponential weighted spaces (see [9]). 

For 𝑓 ∈ 𝐿𝑞
𝑝
  we define the modulus of smoothness (see [10]) 

𝜔𝑘(𝑓, 𝐿𝑞
𝑝
; 𝑡) ≔ sup

|ℎ|≤𝑡
‖∆ℎ

𝑘𝑓(. )‖
𝑝,𝑞
 𝑓𝑜𝑟 𝑡 ≥ 0.                               (1.5) 

    Here, 

∆ℎ
1𝑓(𝑥) = 𝑓(𝑥 + ℎ) − 𝑓(𝑥)   

𝑎𝑛𝑑 
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 ∆ℎ
2𝑓(𝑥) = 𝑓(𝑥 + ℎ) − 𝑓(𝑥 − ℎ) − 2𝑓(𝑥)   𝑥, ℎ ∈ ℝ.                    (1.6) 

  From (1.4)-(1.6) for 𝑓 ∈ 𝐿𝑞
𝑝

 the following conditions are satisfied (see 

[1, 11]) for 𝜆, 𝑡 ≥ 0  and 𝑘 = 1, 2: 

𝑖) lim
𝑡→0

𝜔𝑘(𝑓, 𝐿𝑞
𝑝
; 𝑡) = 0                                                                     (1.7) 

𝑖𝑖)𝜔𝑘(𝑓, 𝐿𝑞
𝑝
; 𝑡1) ≤ 𝜔𝑘(𝑓, 𝐿𝑞

𝑝
; 𝑡2)   𝑖𝑓   0 ≤ 𝑡1 < 𝑡2                          (1.8) 

𝑖𝑖𝑖)𝜔𝑘(𝑓, 𝐿𝑞
𝑝
; 𝜆𝑡) ≤ (1 + 𝜆)𝑘𝑒𝑞(𝑡𝜆)

2
𝜔𝑘(𝑓, 𝐿𝑞

𝑝
; 𝑡)                     (1.9) 

 

AUXILIARY RESULTS 

In this part, we shall give some fundamental properties of the  

Generalized Gauss-Weierstrass integral operators 𝑊𝑛,𝑟   in the spaces 

𝐿2𝑞
𝑝 (ℝ). Firstly, we give the following two lemmas. It is easy to verify 

these two lemmas. 

Lemma 1.  The equality 

𝐼𝑟 ≔ √
𝑛

4𝜋
∫ 𝑡𝑟
∞

0

𝑒
−𝑛𝑡2

4 𝑑𝑡 =

{
 
 

 
 

1                        𝑖𝑓 𝑟 = 0,

2𝑘(2𝑘 − 1)‼ (
1

𝑛
)
𝑘

𝑖𝑓 𝑟 = 2𝑘 ≥ 2,

22𝑘+1𝑘!

𝑛
𝑘+1
2 √𝜋

                  𝑖𝑓 𝑟 = 2𝑘 + 1,

 

where (2𝑘 − 1)‼ = 1.3.5… (2𝑘 − 1)  𝑓𝑜𝑟 𝑘 ∈ ℕ, ℎ𝑜𝑙𝑑𝑠 𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑟 ∈

ℕ0  𝑎𝑛𝑑 𝑛 > 0 (𝑠𝑒𝑒 [8]). 

Lemma 2.  Let 𝑒0(𝑥) = 1, 𝑒1(𝑥) = 𝑥 𝑎𝑛𝑑 𝜑𝑥(𝑡) = 𝑡 − 𝑥 𝑓𝑜𝑟 𝑥, 𝑡 ∈

 ℝ  𝑎𝑛𝑑 𝑘 ∈ ℕ.  𝑇ℎ𝑒𝑛, 

𝑊𝑛(𝑒𝑖; 𝑥) = 𝑒𝑖(𝑥) 𝑓𝑜𝑟 𝑥 ∈  ℝ  𝑎𝑛𝑑 𝑛 ∈ ℕ.  𝑖 = 0, 1                     (2.2) 

𝑊𝑛(𝜑𝑥
𝑘(𝑡); 𝑥) =

((−1)𝑘+1)Γ(
𝑘+1

2
)

2√𝜋𝑛
𝑘
2

                                                      (2.3) 

𝑊𝑛(|𝜑𝑥(𝑡)|exp (𝑞|𝜑𝑥(𝑡)|
2); 𝑥) = √

𝑛

𝜋

Γ(
𝑘+1

2
)

(𝑛−𝑞)
𝑘+1
2

,   𝑛 > 𝑞 + 1      (2.4) 

where 𝛤  is gamma function. Now using Lemma 1, we prove main lemma. 
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Lemma  3.  Let 𝑓 ∈ 𝐿𝑞
𝑝(ℝ) 𝑤𝑖𝑡ℎ 𝑓𝑖𝑥𝑒𝑑 1 ≤ 𝑝 ≤ ∞, 𝑞 > 0, 𝑡ℎ𝑒𝑛 𝑓𝑜𝑟 𝑛 >

8𝑞 + 1, we have 

‖𝑊𝑛,𝑟𝑓‖𝑝,2𝑞 ≤
∑ ‖𝑓(𝑗)‖

𝑝,𝑞
𝑟
𝑗=0 𝐼𝑟.               (2.6)  

The formula (1.2) and inequality (2.5) Show that the integral 𝑊𝑛,𝑟(𝑓) for 

fixed 𝑟 ∈ ℕ0  𝑎𝑛𝑑  𝑛 > 0   is a linear positive operator from 

 𝐿𝑞
𝑝(ℝ) 𝑖𝑛𝑡𝑜 𝐿2𝑞

𝑝 (ℝ). 

Proof. If r ∈ ℕ0 and 1 ≤ p < ∞, then, by (1.2), using Minkowski 

inequality and (2.1), we obtain for Lq
𝑝,𝑟(ℝ)  and  𝑛 > 8𝑞 + 1 

‖𝑊𝑛,𝑟𝑓‖𝑝,2𝑞 =∑
1

𝑗!

𝑟

𝑗=0

( ∫|𝑒−2𝑞𝑥
2
(𝑊𝑛,𝑟𝑓)(𝑥)|

𝑝
𝑑𝑥

∞

−∞

)

1
𝑝

 

≤∑
1

𝑗!

𝑟

𝑗=0

( ∫ 𝑒−2𝑞𝑥
2
|√
𝑛

4𝜋
∫∑𝑓(𝑥 + 𝑡)

𝑟

𝑗=0

∞

−∞

(𝑡)𝑗𝑒−
𝑛𝑡2

4 𝑑𝑡|

𝑝

𝑑𝑥

∞

−∞

)

1
𝑝

 

≤∑
1

𝑗!

𝑟

𝑗=0

√
𝑛

4𝜋
∫|𝑡|𝑗𝑒−

𝑛𝑡2

4 𝑑𝑡

∞

−∞

( ∫|𝑒−2𝑞(𝑢−𝑡)
2
𝑓(𝑗)(𝑢)|

𝑝
𝑑𝑢

∞

−∞

)

1
𝑝

𝑑𝑡 

=∑
1

𝑗!

𝑟

𝑗=0

√
𝑛

4𝜋
∫|𝑡|𝑗𝑒−

𝑛𝑡2

4 𝑑𝑡

∞

−∞

( ∫ 𝑒−2𝑢
2𝑝+2𝑞𝑡2𝑝|𝑓(𝑗)(𝑢)|

𝑝
𝑑𝑢

∞

−∞

)

1
𝑝

 

=∑
2

𝑗!

𝑟

𝑗=0

‖𝑓(𝑗)‖
𝑝,𝑞
∫ 𝑡𝑗𝑒−𝑡

2(
𝑛
4
−2𝑞)

∞

0

𝑑𝑡 =∑
2

𝑗!

𝑟

𝑗=0

‖𝑓(𝑗)‖
𝑝,𝑞
𝐼𝑟, 

where Ir  is given by (2.1). 

APPROXIMATION RESULTS 

Theorem 1. If 𝑓 ∈ 𝐿𝑞
𝑝,𝑟(ℝ) with fixed 1 ≤ 𝑝 ≤ ∞, 𝑞 > 0, 𝑟 ∈ ℕ  and 

  𝑛 > 8𝑞 + 1. Then, we have  

     ‖𝑊𝑛,𝑟(𝑓) − 𝑓‖𝑝,2𝑞 ≤ 𝐻(𝑟)𝑛
−
𝑟

2𝜔1 (𝑓
(𝑟), 𝐿𝑞

𝑝
;
1

√𝑛
) .                  (3.1) 
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H(r) is a positive constant depending only on r and  𝜔1(𝑓
(𝑟), 𝐿𝑞

𝑝
; . ) is 

defined by (1.5). 

Proof. We can write the following Taylor-type theorem with 𝑓 ∈ 𝐿𝑞
𝑝,𝑟(ℝ) 

and 𝑥, 𝑡 ∈ ℝ 

𝑓(𝑥) =∑
𝑓(𝑗)(𝑡)

𝑗!

𝑟

𝑗=0

(𝑥 − 𝑡)𝑗 +
(𝑥 − 𝑡)𝑗

(𝑟 − 1)!
𝑆𝑟(𝑡, 𝑥),  

where  

𝑆𝑟(𝑡, 𝑥):= ∫ (1 − 𝑢)
𝑟−11

0
[𝑓(𝑟)(𝑡 + 𝑢(𝑥 − 𝑡)) − 𝑓(𝑟)(𝑡)]𝑑𝑢.      (3.2) 

By (3.2), (3.3) and (1.2) it follows that 

𝑊𝑛,𝑟(𝑓; 𝑥) − 𝑓(𝑥) =
(−1)𝑟+1

(𝑟 − 1)!
𝑊𝑛,((𝑡 − 𝑥)

𝑟𝑆𝑟(𝑡, 𝑥); 𝑥) 

   = √
𝑛

4𝜋

(−1)𝑟+1

(𝑟−1)!
∫ (𝑡𝑟 ∫ (1 − 𝑢)𝑟−1∆−𝑢𝑡

1 𝑓(𝑟)(𝑥 + 𝑡)𝑑𝑢
1

0
)

∞

−∞
𝑒−

𝑛𝑡2

4 𝑑𝑡   (3.4) 

for 𝑥 ∈ ℝ and 𝑛 > 8𝑞 + 1. 

𝑖) Let 1 ≤ p < ∞, if we use  the Minkowski inequality and (1.4), we can 

find (3.4): 

  ‖𝑊𝑛,𝑟(𝑓) − 𝑓‖𝑝,2𝑞 

=
√𝑛

√4𝜋(𝑟 − 1)!
× 

( ∫ |𝑒−2𝑞𝑥
2
∫ 𝑡𝑟𝑒−

𝑛𝑡2

4 (∫(1 − 𝑢)𝑟−1∆−𝑢𝑡
1 𝑓(𝑟)(𝑥 + 𝑡)𝑑𝑢

1

0

)𝑑𝑡

∞

−∞

|

𝑝

𝑑𝑥

∞

−∞

)

1
𝑝

 

≤
√𝑛

√4𝜋(𝑟 − 1)!
× 

( ∫|𝑡|𝑟𝑒−𝑡
2(
𝑛
4
−2𝑞) (∫(1 − 𝑢)𝑟−1

1

0

‖∆−𝑢𝑡
1 𝑓(𝑟)(. )‖

𝑝,𝑞
𝑑𝑢)𝑑𝑡

∞

−∞

) 
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≤
√𝑛

√4𝜋(𝑟 − 1)!
× 

( ∫|𝑡|𝑟𝑒−𝑡
2(
𝑛
4
−2𝑞) (∫(1 − 𝑢)𝑟−1𝜔1(𝑓

(𝑟), 𝐿𝑞
𝑝
; 𝑢|𝑡|)

1

0

𝑑𝑢)𝑑𝑡

∞

−∞

) 

≤
√𝑛

√4𝜋(𝑟 − 1)!
∫|𝑡|𝑟𝑒−𝑡

2(
𝑛
4
−2𝑞)

∞

−∞

𝜔1(𝑓
(𝑟), 𝐿𝑞

𝑝
; |𝑡|)𝑑𝑡 

by using (1.9) 

≤
1

𝑟!
𝜔1 (𝑓

(𝑟), 𝐿𝑞
𝑝
;
1

√𝑛
)√

𝑛

𝜋
∫ 𝑡𝑟(1 + √𝑛𝑡)

∞

0

𝑒
−𝑡2(

𝑛
4
−2𝑞)

𝑑𝑡

=
1

𝑟!
(𝐼𝑟 + √𝑛𝐼𝑟+1) 𝜔1 (𝑓

(𝑟), 𝐿𝑞
𝑝
;
1

√𝑛
) 

                                      = 𝐻(𝑟)𝑛−
𝑟
2𝜔1 (𝑓

(𝑟), 𝐿𝑞
𝑝
;
1

√𝑛
)   𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 > 0, 

where 𝐼𝑟 is given by (2.1). Using (2.1), we obtain (3.1) for 1 ≤ p < ∞. 

𝑖𝑖) If 𝑝 = ∞,  then  it follows from (1.5) and (1.9) that 

 |∆−𝑢𝑡
1 𝑓(𝑟)(𝑥 + 𝑡)| ≤ 𝜔1(𝑓

(𝑟), 𝐿𝑞
∞; 𝑢|𝑡|) 

               ≤ 𝜔1(𝑓
(𝑟), 𝐿𝑞

∞; |𝑡|) 

                           ≤ (1 + √𝑛𝑡) 𝜔1 (𝑓
(𝑟), 𝐿𝑞

∞;
1

√𝑛
)                       (3.5) 

𝑛 ∈ ℕ and for 0 ≤ 𝑢 ≤ 1. Using by (3.4) and (3.5), we obtain (3.1) for 

𝑝 = ∞. 

Corollary 1. If 𝑓 ∈ 𝐿𝑞
𝑝,𝑟(ℝ), 1 ≤ p < ∞, q > 0 𝑎𝑛𝑑 r ∈ ℕ0  𝑡ℎ𝑒𝑛 

lim
𝑛→∞

𝑛−
𝑟
2‖𝑊𝑛,𝑟(𝑓) − 𝑓‖𝑝,2𝑞 = 0. 

Similarly to the proof of Theorem 2 given in paper [8] and applying 

Corollary 1, we give the Voronovskaya-type theorem for 𝑊𝑛,𝑟. 

Theorem 2. Let 𝑓 ∈ 𝐿𝑞
𝑝,𝑟(ℝ), r ∈ ℕ0  𝑎𝑛𝑑 𝑞 > 0. Then,  

𝑊𝑛,𝑟(𝑓; 𝑥) − 𝑓(𝑥) 
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=
(−1)𝑟 − 1

(𝑟 + 1)!
𝐼𝑟+1𝑓

(𝑟+1)(𝑥) +
(−1)𝑟 + 1

(𝑟 + 2)!
𝐼𝑟+2𝑓

(𝑟+2)(𝑥) + 𝜊 (𝑛−(1+
𝑟
2
)) 

as 𝑛 → ∞, at every 𝑥 ∈ ℝ. Especially, if r is even number, then 

lim
𝑛→∞

(𝑟+2)!

𝐼𝑟+2
[𝑊𝑛,𝑟(𝑓; 𝑥) − 𝑓(𝑥)] = 2(𝑟 + 1)𝑓

(𝑟+2)(𝑥)  𝑎𝑡 𝑒𝑣𝑒𝑟𝑦 𝑥 ∈ ℝ. 

Theorem 3. Let 𝑓 ∈ 𝐿𝑞
∞,𝑟+2(ℝ), 𝑞 > 0  𝑎𝑛𝑑  𝑒𝑣𝑒𝑛 𝑛𝑢𝑚𝑏𝑒𝑟 r ∈ ℕ0. 

Then  

‖
(𝑟 + 2)!

𝐼𝑟+2
[𝑊𝑛,𝑟(𝑓; 𝑥) − 𝑓(𝑥)] − 2(𝑟 + 1)𝑓

(𝑟+2)‖
𝑝,2𝑞

 

≤ (𝑟 + 4)
𝜔1(𝑓

(𝑟+2),𝐿𝑞
∞;

1

√𝑛
)

(𝑟+2)!
√
𝑛

𝜋
[
Γ(
𝑟+3

2
)

(𝑛−𝑞)
𝑟+3
3

+
√𝑛Γ(

𝑟+4

2
)

(𝑛−𝑞)
𝑟+4
2

] . 

Proof. For 𝑓 ∈ 𝐿𝑞
∞,𝑟+2

 and 𝑥, 𝑡 ∈  ℝ  the Taylor-type formula  

𝑓(𝑥) =∑
𝑓(𝑗)(𝑡)

𝑗!

𝑟+2

𝑗=0

(𝑥 − 𝑡)𝑗 +
(𝑥 − 𝑡)𝑟+2

(𝑟 + 1)!
𝑆1(𝑡, 𝑥),                           (3.9) 

where 

𝑆1(𝑡, 𝑥):= ∫(1 − 𝑢)
𝑟+1

1

0

[𝑓(𝑟+2)(𝑡 + 𝑢(𝑥 − 𝑡)) − 𝑓(𝑟+2)(𝑡)]𝑑𝑢.    (3.10) 

Similarly, for 𝑓(𝑟+1) ∈ 𝐿𝑞
∞,1

 , we get 

𝑓(𝑟+1)(𝑡) = 𝑓(𝑟+1)(𝑥) + 𝑓(𝑟+2)(𝑥)(𝑡 − 𝑥) + (𝑡 − 𝑥)𝑆2(𝑡, 𝑥),      (3.11) 
where  

𝑆2(𝑡, 𝑥):= ∫ [𝑓
(𝑟+2)(𝑡 + 𝑢(𝑥 − 𝑡)) − 𝑓(𝑟+2)(𝑥)]

1

0
𝑑𝑢.                     (3.12)  

By using (1.2) and (3.11), we can write the formula (3.9) as follows: 
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𝑓(𝑥) =∑
𝑓(𝑗)(𝑡)

𝑗!

𝑟

𝑗=0

(𝑥 − 𝑡)𝑗 +
(𝑥 − 𝑡)𝑟+1

(𝑟 + 1)!
𝑓(𝑟+1)(𝑥)

+ (
1

(𝑟 + 2)!
−

1

(𝑟 + 1)!
) 𝑓(𝑟+2)(𝑥)(𝑥 − 𝑡)𝑟+2

−
(𝑥 − 𝑡)𝑟+2

(𝑟 + 1)!
𝑆2(𝑡, 𝑥)

+
(𝑥 − 𝑡)𝑟+2

(𝑟 + 2)!
[𝑓(𝑟+2)(𝑡) − 𝑓(𝑟+2)(𝑥)]

+
(𝑥 − 𝑡)𝑟+2

(𝑟 + 1)!
𝑆1(𝑡, 𝑥). 

Using operator 𝑊𝑛 and (1.1)-(1.2) as fixed point 𝑥 ∈  ℝ  , we get from the 

last equality: 

𝑓(𝑥) = 𝑊𝑛,𝑟(𝑓; 𝑥) −
Γ(
𝑟+3

2
)𝑓(𝑟+2)(𝑥)

√𝜋𝑛
𝑟+2
2 (𝑟+2)𝑟!

+ 𝐾1(𝑥) + 𝐾2(𝑥) + 𝐾3(𝑥), 

where 

     𝐾1(𝑥) ≔
1

(𝑟+1)!
𝑊𝑛((𝑡 − 𝑥)

𝑟+2𝑆2(𝑡, 𝑥); 𝑥)  

     𝐾2(𝑥) ≔
1

(𝑟+2)!
𝑊𝑛((𝑡 − 𝑥)

𝑟+2[𝑓(𝑟+2)(𝑡) − 𝑓(𝑟+2)(𝑥)]; 𝑥)  

𝐾2(𝑥) ≔
1

(𝑟+1)!
𝑊𝑛((𝑡 − 𝑥)

𝑟+2𝑆1(𝑡, 𝑥); 𝑥).  

Therefore, we obtain  

‖√𝜋𝑛
𝑟+2
2 (𝑟 + 2)𝑟! [𝑊𝑛,𝑟(𝑓) − 𝑓] − Γ (

𝑟 + 3

2
)𝑓(𝑟+2)(𝑥)‖

∞,2𝑞
 

≤ √𝜋𝑛
𝑟+2

2 (𝑟 + 2)𝑟! × (‖𝐾1(𝑥)‖∞,2𝑞 + ‖𝐾2(𝑥)‖∞,2𝑞 + ‖𝐾3(𝑥)‖∞,2𝑞). 

From (3.12), there holds: 

𝜆𝑞(𝑥)|𝐾1(𝑥)| ≤
𝑒−𝑞𝑥

2

(𝑟+1)!
𝑊𝑛(|𝑡 − 𝑥|

𝑟+2𝑆2(𝑡, 𝑥); 𝑥)  

              ≤
1

(𝑟 + 1)!
𝑊𝑛(|𝑡 − 𝑥|

𝑟+2𝜔1(𝑓
(𝑟+2), 𝐿𝑞

∞; |𝑡 − 𝑥|); 𝑥) 

and from (1.9), it follows that 
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≤
1

(𝑟 + 1)!
𝑊𝑛 (|𝑡 − 𝑥|

𝑟+2(1

+ |𝑡 − 𝑥|√𝑛)𝑒𝑞|𝑡−𝑥|
2
𝜔1 (𝑓

(𝑟+2), 𝐿𝑞
∞;

1

√𝑛
) ; 𝑥) 

=
1

(𝑟+1)!
𝜔1 (𝑓

(𝑟+2), 𝐿𝑞
∞;

1

√𝑛
) × [

𝑊𝑛(|𝑡 − 𝑥|
𝑟+2𝑒𝑞|𝑡−𝑥|

2
; 𝑥) +

√𝑛𝑊𝑛(|𝑡 − 𝑥|
𝑟+3𝑒𝑞|𝑡−𝑥|

2
; 𝑥)

] 

and then by (2.4) we get 

‖𝐾1(𝑥)‖∞,2𝑞 ≤

𝜔1 (𝑓
(𝑟+2), 𝐿𝑞

∞;
1

√𝑛
)

(𝑟 + 1)!
√
𝑛

𝜋
[
Γ (
𝑟 + 3
2

)

(𝑛 − 𝑞)
𝑟+3
3

+
√𝑛Γ(

𝑟 + 4
2

)

(𝑛 − 𝑞)
𝑟+4
2

].  

Similarly, by (1.5) and (1.9) we can write 

|𝑓(𝑟+2)(𝑡) − 𝑓(𝑟+2)(𝑥)| ≤ 𝑒𝑞𝑥
2
𝜔1(𝑓

(𝑟+2), 𝐿𝑞
∞; |𝑡 − 𝑥|) 

≤ 𝑒𝑞|𝑡−𝑥|
2+𝑞𝑥2(1 + |𝑡 − 𝑥|√𝑛)𝑒𝑞|𝑡−𝑥|

2
𝜔1 (𝑓

(𝑟+2), 𝐿𝑞
∞;

1

√𝑛
), 

and from (3.10), there holds: 

𝑆1(𝑡, 𝑥) ≤ ∫(1 − 𝑢)
𝑟+1

1

0

𝜔1(𝑓
(𝑟+2), 𝐿𝑞

∞; 𝑢|𝑡 − 𝑥|)𝑒𝑞𝑡
2
𝑑𝑢 

           ≤ 𝑒𝑞𝑡
2
𝜔1(𝑓

(𝑟+2), 𝐿𝑞
∞; |𝑡 − 𝑥|)∫(1 − 𝑢)𝑟+1

1

0

𝑑𝑢 

                           ≤
1

𝑟 + 2
𝑒𝑞|𝑡−𝑥|

2+𝑞𝑥2(1 + |𝑡 − 𝑥|√𝑛)𝜔1 (𝑓
(𝑟+2), 𝐿𝑞

∞;
1

√𝑛
). 

Then, using (2.4) and above inequalities, we conclude that (3.13) 

‖𝐾2(𝑥)‖∞,2𝑞 ≤
𝜔1(𝑓

(𝑟+2),𝐿𝑞
∞;

1

√𝑛
)

(𝑟+2)!
√
𝑛

𝜋
[
Γ(
𝑟+3

2
)

(𝑛−𝑞)
𝑟+3
3

+
√𝑛Γ(

𝑟+4

2
)

(𝑛−𝑞)
𝑟+4
2

],  

and  

‖𝐾3(𝑥)‖∞,2𝑞 ≤

𝜔1 (𝑓
(𝑟+2), 𝐿𝑞

∞;
1

√𝑛
)

(𝑟 + 2)!
√
𝑛

𝜋
[
Γ (
𝑟 + 3
2 )

(𝑛 − 2𝑞)
𝑟+3
3

+
√𝑛Γ(

𝑟 + 4
2 )

(𝑛 − 𝑞)
𝑟+4
2

] 
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For 𝑛 ≥ 𝑞 + 1.  In short by (3.13) and (3.14), we achieve the desired 

inequality (3.8). 
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1. INTRODUCTION 

The Bernstein type rational functions were introduced by Balázs, in 

which it is considered some approximation properties and its relations with 

probability theory (Balázs, 1975; Balázs, 1977). Balázs and Szabados 

proved the approximation results under some more restrictive conditions 

(Balázs and Szabados, 1982). Totik set down the saturation properties of 

the Bernstein type rational functions (Totik, 1984). Recently, q-analogue 

and (p,q)-analogue of one and two variable Bernstein type rational 

functions have been studied, for instance, see the references (Ispir and 

Ozkan, 2013; Ozkan, 2014; Ozkan, 2016; Ozkan, 2019). 

Zareh introduced the fuzzy sets in (Zareh, 1965). The fuzzy real 

numbers were defined by Wu and Ming (Wu and Ming, 1991; Wu and 

Ming, 1992). Recently, significant results of the approximation theory 

have been generalized in fuzzy sense. The Weierstrass approximation 

theorem in fuzzy sense was given by Gal (Gal, 1993; Gal 1994), Wu and 

Danghang (Wu and Danghang, 1999). Anastassiou presented the 

corresponding Shisha-Mond inequality in fuzzy sense and the well-known 

Korovkin theorem, and he applied the results to the fuzzy operators. Also, 

he studied the fuzzy Korovkin type approximation of the Szasz-Mirakjan 

and the Baskakov-type operators defined on positive real axis in fuzzy 

sense (Anastassiou, 2010). 

In this chapter, we consider Bernstein type rational functions defined 

by Balázs called Balázs operator. We give degree of the approximation for 

the Balázs operator concerning to bounded and continuous functions with 

the help of the first modulus of continuity considering the basic Riesz 

representation theorem for any linear positive operator. Later, we define 

fuzzy Balázs operator and give the relations between the Balázs operator 

and the corresponding fuzzy Balázs operator. Lastly, we obtain degree of 

the approximation for the fuzzy Balázs operator concerning to fuzzy 

bounded and continuous functions on positive real axis with the help of the 

mailto:esmayildiz@gazi.edu.tr
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fuzzy modulus of continuity considering the fuzzy Riesz representation 

theorem. 

2. PRELIMINARIES 

In this part, we recall some basic definitions and results. The details 

can be found in the references (Goetschel and Voxman, 1986; Wu and 

Ming, 1991; Wu and Ming, 1992; Ming, 1993; Kim and Ghil, 1997; 

Anastassiou, 2010). Fuzzy real number is a sententious concept in fuzzy 

mathematics. However, there are many definitions, in this study, we 

purpose the following basic concepts. 

Definition 1. Let 𝑧:ℝ → [0,1] be any function. 𝑧 is called a fuzzy real 

number if 𝑧 satisfies 

i. There exists at least an element 𝑥0 ∈ ℝ satisfying 𝑧(𝑥0) = 1, 

ii. For each 𝜆 ∈ [0,1] and 𝜌, 𝜎 ∈ ℝ 

𝑧(𝜆𝜌 + (1 − 𝜆)𝜎) ≥ 𝑚𝑖𝑛{𝑧(𝑥), 𝑧(𝑦)}, 

equivalently, for all 𝜂 ∈ [0,1], the set {𝑥 ∈ ℝ: 𝑧(𝑥) ≥ 𝜂} is convex. 

iii. There exists at least a neighborhood 𝑉(𝑥0) satisfying 𝑧(𝑥) ≤
𝑧(𝑥0) + 𝜀 for all 𝑥 ∈ 𝑉(𝑥0), 

iv. The set {𝑥 ∈ ℝ: 𝑧(𝑥) > 0}̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ is compact, where 𝐴̅ is the closure of 

any set 𝐴. 

By ℝℱ is denoted the set of all fuzzy real numbers. Let denote us 

by [𝑧]𝑟 = {𝑥 ∈ ℝ: 𝑧(𝑥) ≥ 𝑟}, which is a bounded and closed interval of ℝ 

for all 𝑟 ∈ [0,1]. Let 𝑟1, 𝑟2 ∈ [0,1] such that 𝑟1 ≤ 𝑟2 then [𝑧]𝑟1 ⊆ [𝑧]𝑟2 . The 

addition denoted by 𝑤⨁𝑧 and the scalar product denoted by 𝑘⨀𝑧 on ℝℱ 

are defined by  

[𝑤⨁𝑧]𝑟 = [𝑤]𝑟 + [𝑧]𝑟,  [𝑘⨀𝑧]𝑟 = 𝑘[𝑧]𝑟, 

uniquely for 𝑤, 𝑧 ∈ ℝℱ, 𝑘 ∈ ℝ and 𝑟 ∈ [0,1], respectively. 

Let 𝐷: ℝℱ × ℝℱ → [0,∞) be defined by 

𝐷(𝑤, 𝑣) = sup
𝑟∈[0,1]

max{|𝑤−
𝑟 − 𝑧−

𝑟 |, |𝑤+
𝑟 − 𝑧+

𝑟 |}, 

where [𝑧]𝑟 = [𝑧−
𝑟 , 𝑧+

𝑟 ], [𝑤]𝑟 = [𝑤−
𝑟, 𝑤+

𝑟] ⊂  ℝ. 𝐷 is a metric on ℝℱ . 
(ℝℱ , 𝐷) is a complete metric space, which has very close properties of a 

metric derived by a norm. A partial order on ℝℱ is defined by “≤” such 

that 𝑤, 𝑧 ∈ ℝℱ , 𝑤 ≤ 𝑧 if and only if [𝑤]𝑟 ≤ [𝑧]𝑟 for all  𝑟 ∈ [0,1] if and 

only if 𝑤−
𝑟 ≤ 𝑧−

𝑟 ,  𝑤+
𝑟 ≤ 𝑧+

𝑟  for all  𝑟 ∈ [0,1]. 

Lemma 1. Let 𝑘, 𝑙 ∈ ℝ, 𝑤, 𝑧 ∈ ℝℱ and 𝑜̃ = 𝜒{0} be the characteristic 

function of {0}. Then  

i. A neutral element with respect to ⨁ is 𝑜̃ ∈ ℝℱ, 
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ii. For each 𝑧 ≠ 𝑜̃, 𝑧 ∈ ℝℱ has not an opposite in ℝℱ, 

iii. If 𝑘, 𝑙 > 0 or 𝑘, 𝑙 ≤ 0, we have  

(𝑘 + 𝑙)⨀𝑧 = 𝑘⨀𝑧⨁𝑙⨀𝑧, 

(The above property does not hold for general 𝑘, 𝑙 ∈ ℝ.) 

iv. 𝑘⨀(𝑤⨁𝑧) = 𝑘⨀𝑤⨁𝑘⨀𝑧, 
v. 𝑘⨀(𝑙⨀𝑧) = (𝑘. 𝑙)⨀𝑧. 

Let (𝑋, 𝑑) be any metric space and 𝑆 ⊂ 𝑋 be a subset. A function 

𝜑: 𝑆 → ℝℱ is called a fuzzy real number valued function on 𝑆 or shortly a 

fuzzy function on 𝑆. 

Definition 2. Let  𝑆 be an open (or compact) subset of real numbers. Any 

function 𝜑: 𝑆 → ℝℱ is called a fuzzy continuous at 𝑥0 ∈ 𝑆 if and only if 𝜑 

is sequential continuous at 𝑥0 ∈ 𝑆. If 𝜑 is continuous for each 𝑥0 ∈ 𝑆, then 

𝜑 is called a fuzzy continuous function on 𝑆. The space of all fuzzy 

continuous functions is denoted by 𝐶ℱ(𝑆). 

Definition 3. Any function 𝜑: 𝑆 → ℝℱ is called a fuzzy bounded function 

on 𝑆 if and only if there exists  𝑀 > 0 such that 𝐷(𝑓(𝑥), 𝑜̃) ≤ 𝑀 for all 

𝑥 ∈ 𝑆. 

Definition 4. Let 𝜑: 𝑆 → ℝℱ be a fuzzy function on 𝑆. The first modulus 

of continuity of 𝜑 is defined by 

𝜔1
ℱ(𝜑; 𝛿) ≔ sup

𝑥,𝑦∈𝑆

𝑑(𝑥,𝑦)≤𝛿

𝐷(𝜑(𝑥), 𝜑(𝑦)), 

for 0 < 𝛿 < 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟(𝑆). If 𝛿 > 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟(𝑆) then  

𝜔1
ℱ(𝜑; 𝛿) ≔ 𝜔1

ℱ(𝜑; 𝑑𝑖𝑎𝑚𝑒𝑡𝑒𝑟(𝑆)). 

Proposition 1. For 𝛿 > 0, assume that 𝜔1
ℱ(𝜑; 𝛿), 𝜔1(𝜑−

𝑟 ; 𝛿) and 

𝜔1(𝜑+
𝑟 ; 𝛿) are finite. Then it holds 

𝜔1
ℱ(𝜑; 𝛿) = sup

𝑟∈[0,1]
max{𝜔1(𝜑−

𝑟 ; 𝛿) , 𝜔1(𝜑+
𝑟 ; 𝛿)}, 

where 𝜔1(𝑓; 𝛿) = sup
𝑡,𝑥∈𝑆
|𝑡−𝑥|≤𝛿

|𝑓(𝑡) − 𝑓(𝑥)| is the first modulus of continuity 

for all 𝑓 ∈ 𝐶(𝑆) satisfying 

|𝑓(𝑡) − 𝑓(𝑥)| ≤ 𝜔1(𝑓; 𝛿) (1 +
|𝑡−𝑥|

𝛿
)    (2.1) 

We recall the following general fuzzy integral. 

Let (Ω, Σ, 𝜇) be a complete 𝜎-finite measure space and let Φ be a fuzzy 

function on Ω defined by 

Φ(𝜔) = {(Φ−
𝑟 (𝜔),Φ+

𝑟 (𝜔)): 𝑟 ∈ [0,1],𝜔 ∈ Ω}. 
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Definition 5. Φ:Ω → ℝℱ is called mesurable if and only if for all closed 

subset 𝐸  of ℝ, the function Φ−1(𝐸):Ω → [0,1] defined by  

Φ−1(𝐸)(𝜔) = sup
𝑥∈𝐸

𝛷(𝜔)(𝑥) , ∀𝜔 ∈ Ω, 

is measurable. 

Theorem 1. The followings are equivalent: 

i. Φ is measurable, 

ii. For all 𝑟 ∈ [0,1], Φ−
𝑟  and Φ+

𝑟  are measurable. Since Φ−
𝑟  and Φ+

𝑟  are 

integrable, we have that the corresponding parameterized 

representation 

{(∫ 𝛷−
𝑟𝑑𝜇,

𝐴

∫ 𝛷+
𝑟𝑑𝜇,

𝐴

) : 𝑟 ∈ [0,1], 𝐴 ∈ Σ} 

is a fuzzy real number. 

Definition 6. A measurable function Φ:Ω → ℝℱ is called integrable if Φ−
r  

and Φ+
r  are integrable for all 𝑟 ∈ [0,1], or equivalently, if Φ−

0  and Φ+
0  are 

integrable. In this case, the fuzzy integral of Φ over 𝐴 ∈ Σ is defined by 

∫ Φdμ ≔ {(∫ Φ−
r dμ,

A

∫ Φ+
r dμ,

A

) : r ∈ [0,1], ∀A ∈ Σ} .

A

 

The fuzzy integral has the following properties. 

Theorem 2. Let Φ,Ψ:Ω → ℝℱ be fuzzy integrable functions. Then 

i. Let 𝑐1, 𝑐2 ∈ ℝ, then 𝑐1𝛷 +𝑐2𝛹 is integrable and  

∫(c1Φ + c2Ψ)dμ =

A

c1∫ Φdμ

A

+ c2∫ Ψdμ

A

, ∀A ∈ Σ 

ii. D(Φ ,Ψ) is a real valued integrable function and  

D(∫ Φdμ

A

, ∫ Ψdμ

A

) ≤ ∫ D(Φ ,Ψ)dμ

A

, ∀A ∈ Σ. 

Let (𝑋, 𝑑) be any metric space and 𝑆 be a subset of 𝑋. 

Definition 7. Let 𝜑,𝜙 be fuzzy functions on 𝑆. We denote 𝜑 ≽ 𝜙 if and 

only if 𝜑(𝑥) ≥ 𝜙(𝑥) for all 𝑥 ∈ 𝑆 if and only if 𝜑+
𝑟 (𝑥) ≥ 𝜙+

𝑟 (𝑥) and 

𝜑−
𝑟(𝑥) ≥ 𝜙−

𝑟(𝑥) for all  𝑥 ∈ 𝑆, 𝑟 ∈ [0,1] if and only if 𝜑+
𝑟 ≥ 𝜙+

𝑟  and 

𝜑−
𝑟 ≥ 𝜙−

𝑟  for all 𝑟 ∈ [0,1]. 

Definition 8. Let 𝐿ℱ be any operator from 𝐶ℱ(𝑆) into itself, such that 
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𝐿ℱ(𝑐1𝜑 + 𝑐2𝜙) = 𝑐1𝐿ℱ(𝜑 ) + 𝑐2𝐿ℱ(𝜙 ), 

for all 𝑐1, 𝑐2 ∈ ℝ and 𝜑,𝜙 ∈ 𝐶ℱ(𝑆), then 𝐿ℱ is called a fuzzy linear 

operator on the space 𝐶ℱ(𝑆). 

Definition 9. Let 𝐿ℱ be a fuzzy linear operator from 𝐶ℱ(𝑆) into itself. 

𝐿ℱ is called positive if and only if whenever 𝜑,𝜙 ∈ 𝐶ℱ(𝑆) such that 

𝜑 ≽ 𝜙 then 𝐿ℱ(𝜑 ) ≽ 𝐿ℱ(𝜙 ) if and only if (𝐿ℱ(𝜑 ))+
𝑟
≥  (𝐿ℱ(𝜙 ))+

𝑟
 

and  (𝐿ℱ(𝜑 ))−
𝑟
≥  (𝐿ℱ(𝜙 ))−

𝑟
 for all 𝑟 ∈ [0,1]. Here 

[𝐿ℱ(𝜑 )(𝑥)]
𝑟 = [ (𝐿ℱ(𝜑 )(𝑥))−

𝑟
,  (𝐿ℱ(𝜑 )(𝑥))+

𝑟
], 

for all 𝑥 ∈ 𝑆, 𝑟 ∈ [0,1]. 

For example, the fuzzy Bernstein operator is a fuzzy linear positive 

operator (Gal, 1994). 

Let 𝑊 be a compact subset of any metric space (𝑋, 𝑑). 

Theorem 3. Let 𝐿 be a linear positive operator from 𝐶(𝑊) into itself. 

Then there exists uniquely a fuzzy linear positive operator  𝐿ℱ on 

𝐶ℱ(𝑊) produced by 𝐿 satisfying 

(𝐿ℱ(𝜑))±
𝑟
= 𝐿(𝜑±

𝑟 ), 

respectively in ±, for all 𝑟 ∈ [0,1] and 𝜑 ∈ 𝐶ℱ(𝑊). Additionally, if 

𝐿(𝜑±
𝑟 ) are equicontinuous regarding to 𝑟 ∈ [0,1] respectively in ±, 

then 𝐿ℱ(𝜑) ∈ 𝐶ℱ(𝑊) whenever 𝜑 ∈ 𝐶ℱ(𝑊). 

Let 𝐿ℱ be a fuzzy linear positive operator from 𝐶ℱ(𝑊) into itself. 

Assume that there exists a linear positive operator 𝐿 from 𝐶(𝑊) into 

itself with the properties  

(𝐿ℱ(𝜑))±
𝑟
= 𝐿(𝜑±

𝑟 ),      (2.2) 

respectively in ±, for all 𝑟 ∈ [0,1] and 𝜑 ∈ 𝐶ℱ(𝑊). For example, the 

real Bernstein operators and the corresponding fuzzy Bernstein 

operators fulfill the properties given by (2.2) (see Example 9.7 in 

(Anastassiou, 2010)). 

We recall the fuzzy Riesz representation theorem. 

Theorem 4. Let 𝐿ℱ be a fuzzy linear positive operator from 𝐶ℱ(𝑊) into 

itself satisfying the properties given by (2.2). Then there exists a unique 

positive finite complete Borel measure 𝜇𝑥 on 𝑊 for all 𝑥 ∈ 𝑊 such that  

𝐿ℱ(𝜑)(𝑥) = ∫ 𝜑(𝑠)𝜇𝑥(𝑑𝑠)
𝑊

, 
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for all 𝜑 ∈ 𝐶ℱ(𝑊). 

Remark 1. Let 𝐿 be a linear positive operator from 𝐶(𝑊) into itself, by 

the basic Riesz representation theorem, then we have 

𝐿(𝑓)(𝑥) = ∫ 𝑓(𝑠)𝜇𝑥(𝑑𝑠)
𝑊

, 

for all 𝑓 ∈ 𝐶(𝑊), where 𝜇𝑥 is a unique positive finite complete Borel 

measure on 𝑊. 

Theorem 5. Let (𝑉, ‖. ‖) be any real normed vector space, 𝑌 be a 

convex subset of 𝑉, 𝑥0 ∈ 𝑌 be fixed and 𝜇 be a complete Borel 

measure on 𝑌 such that 𝜇(𝑌) = 𝑝 > 0. Let also 𝜑 ∈ 𝐶ℱ
𝐵(𝑌), i.e. 𝜑 is a 

fuzzy real valued bounded and continuous function on 𝑌. Then the 

following inequality holds 

𝐷(∫ 𝜑(𝑠)𝑑𝜇𝑠
𝑌

, 𝜑(𝑥0)) ≤ (𝑝 − 1)𝐷(𝜑(𝑥0), 𝑜̃) 

                       +𝜔1
ℱ (𝜑; (∫ ‖𝑠 − 𝑥0‖

2𝑑𝜇𝑠
𝑌

)

1/2

)𝑚𝑖𝑛{𝑝 + 1, 𝑝 + √𝑝}. 

(2.3) 

Selecting 𝑌 = ℝ+ = [0,∞), we obtain 

𝐷(∫ 𝜑(𝑠)𝑑𝜇𝑠
𝑌

, 𝜑(𝑥0)) ≤ (𝑝 − 1)𝐷(𝜑(𝑥0), 𝑜̃) 

                             +𝜔1
ℱ (𝜑; (∫ ‖𝑠 − 𝑥0‖

2𝑑𝜇𝑠
ℝ+

)

1/2

)𝑚𝑖𝑛{𝑝 + 1, 𝑝 + √𝑝}, 

        (2.4) 

for all 𝜑 ∈ 𝐶ℱ
𝐵(ℝ+). 

3. SOME APPROXIMATION RESULTS FOR FUZZY 

BALÁZS OPERATORS  

Let 𝐶𝐵(ℝ
+) be the space of all the real valued continuous and 

bounded functions defined on ℝ+. 

 Bernstein type rational functions concerning to any function 𝑓 ∈
𝐶𝐵(ℝ

+) is defined by  
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𝑅𝑛(𝑓; 𝑥) =
1

(1 + 𝑎𝑛𝑥)
𝑛
∑𝑓(

𝑘

𝑏𝑛
) (
𝑛
𝑘
) (𝑎𝑛𝑥)

𝑘, 𝑛 ∈ ℕ,

𝑛

𝑘=0

 

where (𝑎𝑛) and (𝑏𝑛) are any real sequences independent of 𝑥 (Balázs, 

1975). Here 𝑅𝑛 is a linear positive operator called Balázs operator from 

𝐶𝐵(ℝ
+) into itself.  

Lemma 2.  If 𝑥 ∈ ℝ+, then it holds the following inequalities 

i. 𝑅𝑛(1; 𝑥) = 1, 

ii. 𝑅𝑛(𝑠; 𝑥) =
𝑥

1+𝑎𝑛𝑥
, 

iii. 𝑅𝑛(𝑠
2; 𝑥) =

𝑥2+
𝑥

𝑏𝑛

(1+𝑎𝑛𝑥)
2, 

iv. 𝑅𝑛(𝑠 − 𝑥; 𝑥) = −
𝑎𝑛𝑥

2

1+𝑎𝑛𝑥
, 

v. 𝑅𝑛((𝑠 − 𝑥)
2; 𝑥) =

𝑎𝑛
2𝑥4+

𝑥

𝑏𝑛

(1+𝑎𝑛𝑥)
2. 

Let 𝑋𝑗 be real random variables, which are distributed independently 

and identically and let 𝑆𝑛 = ∑ 𝑋𝑗
𝑛
𝑗=1  for 𝑛 ∈ ℕ. 

Let the expectation operator be denoted by 𝐸. Then the Balázs operators 

𝑅𝑛 has the form 𝐸 (𝑓 (
𝑆𝑛

𝑛
)). 

Let 𝑋 be any random variable. The geometric distribution of 𝑋 is 

defined by 

𝑃𝑋 ≔∑
1

1 + 𝑎𝑛𝑥
(
𝑎𝑛𝑥

1 + 𝑎𝑛𝑥
)
𝑣

𝑛

𝑣=0

𝛿𝑣 , 

where 𝛿𝑣 is Dirac measure at 𝑣. In this case, 𝐸(𝑋) = 1 + 𝑎𝑛𝑥 and 

𝑉𝑎𝑟(𝑋) = 𝑎𝑛𝑥(1 + 𝑎𝑛𝑥). The corresponding probability measure 𝜇 for 

the Balázs operator 𝑅𝑛 is defined by 

𝜇:=
1

(1 + 𝑎𝑛𝑥)
𝑛
∑(

𝑛
𝑖
)

𝑛

𝑖=0

(𝑎𝑛𝑥)
𝑖𝛿𝑖/𝑛. 

Now, we have the following degree of the approximation for the Balázs 

operators 𝑅𝑛. 

Theorem 6. If 𝑓 ∈ 𝐶𝐵(ℝ
+) then it holds  

|𝑅𝑛(𝑓; 𝑥) − 𝑓(𝑥)| ≤ 2𝜔1(𝑓;
√𝑎𝑛

2𝑥4+
𝑥

𝑏𝑛

(1+𝑎𝑛𝑥)
2 ),   (3.1) 
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for all 𝑥 ∈ ℝ+ and 𝑛 ∈ ℕ. 

Proof. Let the probability measure on ℝ+ be denoted by 𝜇. By Considering 

Remark 1 and (i) of Theorem 2, we can be written 

|𝑅𝑛(𝑓; 𝑥) − 𝑓(𝑥)| = |∫ 𝑓(𝑠)𝑑𝜇𝑠
ℝ+

− 𝑓(𝑥)|, 

                        = |∫ (𝑓(𝑠) − 𝑓(𝑥))𝑑𝜇𝑠ℝ+
|.   (3.2) 

From (3.2), by considering Corollary 7.1.1 in (Anastassiou, 1993), we get 

|𝑅𝑛(𝑓; 𝑥) − 𝑓(𝑥)| ≤ ∫ |𝑓(𝑠) − 𝑓(𝑥)|𝑑𝜇𝑠ℝ+
.   (3.3) 

By applying (2.1) to (3.3), we obtain 

|𝑅𝑛(𝑓; 𝑥) − 𝑓(𝑥)| ≤ 𝜔1(𝑓; 𝛿) (1 +
1

𝛿
∫ |𝑠 − 𝑥|𝑑𝜇𝑠ℝ+

).  (3.4) 

By considering Cauchy-Schwarz inequality, we get  

|𝑅𝑛(𝑓; 𝑥) − 𝑓(𝑥)| ≤ 𝜔1(𝑓; 𝛿) (1 +
1

𝛿
(∫ (𝑠 − 𝑥)2𝑑𝜇𝑠ℝ+

)
1/2

), 

which implies 

|𝑅𝑛(𝑓; 𝑥) − 𝑓(𝑥)| ≤ 𝜔1(𝑓; 𝛿) (1 +
1

𝛿
(𝑅𝑛((𝑠 − 𝑥)

2; 𝑥))
1/2
), (3.5) 

In (3.5), by selecting 𝛿 ≔ (𝑅𝑛((𝑠 − 𝑥)
2; 𝑥))

1/2
 given by (v) of Lemma 2, 

we reach desired result. 

Remark 2. Taking 𝜇 = 𝐹𝑆𝑛
𝑛

 in (3.1), we obtain that the Balázs operator 𝑅𝑛 

has the form 

𝐸 (𝑓 (
𝑆𝑛

𝑛
)) = ∫ 𝑑𝐹𝑆𝑛

𝑛
ℝ+

. 

In this case, the standard deviation in geometric case is 

(∫ (𝑠 − 𝑥)2𝑑𝜇𝑠ℝ+
)
1/2

=
√𝑎𝑛

2𝑥4+
𝑥

𝑏𝑛

(1+𝑎𝑛𝑥)
2 . 

Now, we define the fuzzy variant of Balázs operator. 

Definition 10. We define fuzzy Balázs operator concerning to 𝜑 ∈
𝐶ℱ(ℝ

+) by  

𝑅𝑛
ℱ(𝜑: 𝑥) =

1

(1 + 𝑎𝑛𝑥)
𝑛
∑∗𝜑(

𝑗

𝑏𝑛
)⨀(

𝑛
𝑗) (𝑎𝑛𝑥)

𝑗, 𝑛 ∈ ℕ, 𝑥 ∈ ℝ+,

𝑛

𝑗=0
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where (𝑎𝑛) and (𝑏𝑛) are any real sequences independent of 𝑥 and ∑ ∗𝑛
𝑗=0  

is finite fuzzy summation on ℝℱ.  

In the following, we can give the relation between the Balázs operator 𝑅𝑛 

and the fuzzy Balázs operator 𝑅𝑛
ℱ and some properties of the fuzzy Balázs 

operator. 

Lemma 3. Let 𝜑: ℝ+ → ℝℱ be any fuzzy continuous function.  

i. If 𝜑 ∈ 𝐶ℱ
𝐵(ℝ+)  then 𝑅𝑛(𝜑±

𝑟 ; 𝑥) are uniformly bounded for all 𝑟 ∈
[0,1], 𝑥 ∈ ℝ+, respectively in ±, 

ii. The fuzzy Balázs operator 𝑅𝑛
ℱ  is a fuzzy linear positive operator, 

iii. (𝑅𝑛
ℱ(𝜑; 𝑥))

±

𝑟
= 𝑅𝑛(𝜑±

𝑟 ; 𝑥) for all 𝑟 ∈ [0,1], 𝑥 ∈ ℝ+, 

iv. If 𝜑 ∈ 𝐶ℱ
𝐵(ℝ+) then the fuzzy Balázs operator 𝑅𝑛

ℱ(𝜑; . ) ∈
𝐶ℱ
𝐵(ℝ+). 

Proof.  

i. For 𝜑 ∈ 𝐶ℱ
𝐵(ℝ+), 𝜑±

𝑟  are equicontinuous, respectively in ±, and 

uniformly bounded in 𝑟 over ℝ+. By Proposition 1 and Theorem 6, we 

see that  

|𝑅𝑛(𝜑±
𝑟 ; 𝑥)| ≤ |𝜑±

𝑟 (𝑥)| + 2𝜔1(𝜑±
𝑟 ;
√𝑎𝑛

2𝑥4+
𝑥

𝑏𝑛

(1+𝑎𝑛𝑥)
2 ) , 𝑟 ∈ [0,1], 𝑥 ∈ ℝ

+, 

                       ≤ 𝐷(𝜑(𝑥), 𝑜̃) + 𝜔1
ℱ

(

 𝜑;
√𝑎𝑛

2𝑥4 +
𝑥
𝑏𝑛

(1 + 𝑎𝑛𝑥)
2

)

 ≔ 𝑀(𝜑), 

i.e. 

|𝑅𝑛(𝜑±
𝑟 ; 𝑥)| ≤  𝑀(𝜑), 

where the constant 𝑀(𝜑) > 0 for all 𝑟 ∈ [0,1], 𝑥 ∈ ℝ+, thus 

𝑅𝑛(𝜑±
𝑟 ; 𝑥) are uniformly bounded for all 𝑟 ∈ [0,1], 𝑥 ∈ ℝ+. 

ii. We prove the linearity by considering Definition 8. Let 𝜑,𝜙: ℝ+ →
ℝℱ be fuzzy continuous functions and 𝛾, 𝜌 ∈ ℝ. 

𝑅𝑛
ℱ(𝛾𝜑 + 𝜌𝜙; 𝑥) =

1

(1 + 𝑎𝑛𝑥)
𝑛
∑∗ (𝛾𝜑 + 𝜌𝜙) (

𝑗

𝑏𝑛
)⨀(

𝑛
𝑗) (𝑎𝑛𝑥)

𝑗,

𝑛

𝑗=0

 

=
1

(1 + 𝑎𝑛𝑥)
𝑛
∑∗ [𝛾⨀𝜑 (

𝑗

𝑏𝑛
)⨁𝜌⨀𝜙(

𝑗

𝑏𝑛
)]⨀(

𝑛
𝑗) (𝑎𝑛𝑥)

𝑗,

𝑛

𝑗=0
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        =
1

(1 + 𝑎𝑛𝑥)
𝑛
∑∗ 𝛾⨀𝜑(

𝑗

𝑏𝑛
)⨀(

𝑛
𝑗) (𝑎𝑛𝑥)

𝑗,

𝑛

𝑗=0

 

             ⨁
1

(1 + 𝑎𝑛𝑥)
𝑛
∑∗ 𝜌⨀𝜙(

𝑗

𝑏𝑛
)⨀(

𝑛
𝑗) (𝑎𝑛𝑥)

𝑗,

𝑛

𝑗=0

 

        = 𝛾⨀
1

(1 + 𝑎𝑛𝑥)
𝑛
∑∗⨀𝜑(

𝑗

𝑏𝑛
)⨀(

𝑛
𝑗) (𝑎𝑛𝑥)

𝑗,

𝑛

𝑗=0

 

             ⨁𝜌⨀
1

(1 + 𝑎𝑛𝑥)
𝑛
∑∗⨀𝜙(

𝑗

𝑏𝑛
)⨀(

𝑛
𝑗) (𝑎𝑛𝑥)

𝑗,

𝑛

𝑗=0

 

                       = 𝛾⨀𝑅𝑛
ℱ(𝜑; 𝑥)⨁𝜌⨀𝑅𝑛

ℱ(𝜙; 𝑥). 

We obtain the positivity by considering Definition 9. Let 

𝜑,𝜙: ℝ+ → ℝℱ be fuzzy continuous functions, then the functions 𝜑±
𝑟  

and 𝜙±
𝑟  map ℝ+ to ℝ for all 𝑟 ∈ [0,1]. Assume that 𝜑 ≽ 𝜙, if and only 

if 𝜑+
𝑟 ≥ 𝜙+

𝑟  and 𝜑−
𝑟 ≥ 𝜙−

𝑟  for all 𝑟 ∈ [0,1]. Then 

 𝜑±
𝑟 (

𝑗

𝑏𝑛
) ≥ 𝜙±

𝑟 (
𝑗

𝑏𝑛
), 

respectively in respect to ± for all 𝑟 ∈ [0,1], and 

𝜑±
𝑟 (

𝑗

𝑏𝑛
) (
𝑛
𝑗 ) (𝑎𝑛𝑥)

𝑗 ≥ 𝜙±
𝑟 (

𝑗

𝑏𝑛
) (
𝑛
𝑗) (𝑎𝑛𝑥)

𝑗, ∀𝑟 ∈ [0,1]. 

And consequently, it holds 

1

(1+𝑎𝑛𝑥)
𝑛
∑ 𝜑±

𝑟 (
𝑗

𝑏𝑛
) (
𝑛
𝑗) (𝑎𝑛𝑥)

𝑗𝑛
𝑗=0 ≥

1

(1+𝑎𝑛𝑥)
𝑛
∑ 𝜙±

𝑟 (
𝑗

𝑏𝑛
) (
𝑛
𝑗) (𝑎𝑛𝑥)

𝑗𝑛
𝑗=0 . 

Therefore 

𝑅𝑛(𝜑±
𝑟 ; 𝑥) ≥ 𝑅𝑛(𝜙±

𝑟 ; 𝑥), ∀𝑟 ∈ [0,1].  

iii.  Let 𝜑: ℝ+ → ℝℱ be a fuzzy continuous function, which has the form 
[𝜑(𝑥)]𝑟 = [𝜑−

𝑟(𝑥), 𝜑+
𝑟 (𝑥)] for all 𝑟 ∈ [0,1], 𝑥 ∈ ℝ+. Then  

[𝑅𝑛
ℱ(𝜑: 𝑥)]𝑟 = [(𝑅𝑛

ℱ(𝜑: 𝑥))
−

𝑟
, (𝑅𝑛

ℱ(𝜑: 𝑥))
+

𝑟
] 

                        = [
1

(1 + 𝑎𝑛𝑥)
𝑛
(∑∗𝜑 (

𝑗

𝑏𝑛
)⨀(

𝑛
𝑗) (𝑎𝑛𝑥)

𝑗

𝑛

𝑗=0

)

−

𝑟

, 
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1

(1 + 𝑎𝑛𝑥)
𝑛
(∑∗ 𝜑 (

𝑗

𝑏𝑛
)⨀(

𝑛
𝑗) (𝑎𝑛𝑥)

𝑗

𝑛

𝑗=0

)

+

𝑟

] 

                      = [
1

(1 + 𝑎𝑛𝑥)
𝑛
∑𝜑−

𝑟 (
𝑗

𝑏𝑛
) (
𝑛
𝑗 ) (𝑎𝑛𝑥)

𝑗

𝑛

𝑗=0

, 

                              
1

(1 + 𝑎𝑛𝑥)
𝑛
∑𝜑+

𝑟 (
𝑗

𝑏𝑛
)(
𝑛
𝑗) (𝑎𝑛𝑥)

𝑗

𝑛

𝑗=0

] 

                     = [𝑅𝑛(𝜑−
𝑟 ; 𝑥), 𝑅𝑛(𝜑+

𝑟 ; 𝑥)]. 

Thus (𝑅𝑛
ℱ(𝜑; 𝑥))

±

𝑟
= 𝑅𝑛(𝜑±

𝑟 ; 𝑥) for all 𝑟 ∈ [0,1], 𝑥 ∈ ℝ+, 

respectively. 

iv. For 𝜑 ∈ 𝐶ℱ
𝐵(ℝ+), by Theorem 3, the Balázs operator produces the 

unique fuzzy linear positive operator  𝑅𝑛
ℱ(𝜑; 𝑥) from 𝐶ℱ (ℝ

+) into 

itself satisfying 

 𝑅𝑛
ℱ(𝜑; 𝑥) = ∫ 𝜑𝑑𝜇ℝ+

, 

 and since 𝑅𝑛(𝜑±
𝑟 ; 𝑥) are equicontinuous regarding to 𝑟 ∈ [0,1], 

respectively in ±, 𝑅𝑛
ℱ(𝜑; . ) is in 𝐶ℱ (ℝ

+). 

On the other hand,  

𝐷(𝑅𝑛
ℱ(𝜑; 𝑥), 𝑜̃) =

1

(1 + 𝑎𝑛𝑥)
𝑛
𝐷(∑∗ 𝜑 (

𝑗

𝑏𝑛
)⨀(

𝑛
𝑗) (𝑎𝑛𝑥)

𝑗

𝑛

𝑗=0

, 𝑜̃) 

                              ≤
1

(1 + 𝑎𝑛𝑥)
𝑛
∑(

𝑛
𝑗) (𝑎𝑛𝑥)

𝑗

𝑛

𝑗=0

𝐷 (𝜑 (
𝑗

𝑏𝑛
) , 𝑜̃) 

                              ≤ 𝑀
1

(1 + 𝑎𝑛𝑥)
𝑛
∑(

𝑛
𝑗) (𝑎𝑛𝑥)

𝑗

𝑛

𝑗=0

= 𝑀. 

Here there exists 𝑀 > 0 such that  𝐷 (𝜑 (
𝑗

𝑏𝑛
) , 𝑜̃) ≤ 𝑀, since 

𝜑 is fuzzy bounded, i. e. 𝑅𝑛
ℱ(𝜑; . ) is fuzzy bounded on ℝ+. 

Consequently, 𝑅𝑛
ℱ(𝜑; . ) is in 𝐶ℱ

𝐵(ℝ+). 

Now, we give the following degree of approximation for the 

fuzzy Balázs operator 𝑅𝑛
ℱ. 

Theorem 7. For 𝜑 ∈ 𝐶ℱ
𝐵(ℝ+), we have 
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𝐷 (𝑅𝑛
ℱ(𝜑; 𝑥), 𝜑(𝑥)) ≤ 2𝜔1

ℱ

(

 𝜑;
√𝑎𝑛

2𝑥4 +
𝑥
𝑏𝑛

(1 + 𝑎𝑛𝑥)
2

)

 , 𝑥 ∈ ℝ+. 

Proof. By Theorem 4, we can write 

𝐷 (𝑅𝑛
ℱ(𝜑; 𝑥), 𝜑(𝑥)) ≤ 𝐷 (∫ 𝜑(𝑠)𝑑𝜇𝑠, 𝜑(𝑥)ℝ+

),   (3.6) 

for all 𝜑 ∈ 𝐶ℱ
𝐵(ℝ+). Considering (3.6) and Theorem 5, we we obtain 

𝐷 (𝑅𝑛
ℱ(𝜑; 𝑥), 𝜑(𝑥))

≤ 𝑐𝜇𝜔1
ℱ (𝜑; (∫ (𝑠 − 𝑥)2𝑑𝜇𝑠

ℝ+
)

1
2

)+𝑀|𝜇(ℝ+) − 1|. 

On the other hand, by Lemma 2, we acquire 

𝜇(ℝ+) = ∫ 𝑑𝜇𝑠 =
ℝ+

𝑅𝑛(1; 𝑥) = 1 < ∞, 

which indicates 

𝐷 (𝑅𝑛
ℱ(𝜑; 𝑥), 𝜑(𝑥)) ≤ 2𝜔1

ℱ

(

 𝜑;
√𝑎𝑛

2𝑥4 +
𝑥
𝑏𝑛

(1 + 𝑎𝑛𝑥)
2

)

 , 𝑥 ∈ ℝ+. 

4. CONCLUSION 

 Let (𝑎𝑛) and (𝑏𝑛) be any real sequences such that  

𝑙𝑖𝑚
𝑛→∞

𝑎𝑛 = 𝑙𝑖𝑚
𝑛→∞

1

𝑏𝑛
= 0  𝑎𝑠 𝑛 → ∞. 

 Then 

  𝑙𝑖𝑚
𝑛→∞

√𝑎𝑛
2𝑥4+

𝑥

𝑏𝑛

(1+𝑎𝑛𝑥)
2 = 0. 

In Theorem 6, 

 𝑙𝑖𝑚
𝑛→∞

𝜔1 (𝑓;
√𝑎𝑛

2𝑥4+
𝑥

𝑏𝑛

(1+𝑎𝑛𝑥)
2 ) = 0, 

 which means 𝑅𝑛(𝑓; . ) converges to 𝑓 on the space 𝐶𝐵(ℝ
+). 

 In Theorem 7, 
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 𝑙𝑖𝑚
𝑛→∞

𝜔1
ℱ (𝜑;

√𝑎𝑛
2𝑥4+

𝑥

𝑏𝑛

(1+𝑎𝑛𝑥)
2 ) = 0,  

which means 𝑅𝑛
ℱ(𝜑; . ) converges to 𝜑 on the space 𝐶ℱ

𝐵(ℝ+). 
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1. INTRODUCTION 

A contact manifold is a (2 1)k  -dimensional differentiable manifold 

with a contact form. Contact manifolds have many applications in 

mathematics and some applied areas such as mechanics, optics, 

thermodynamics, control theory and theoretical physics [1]. Also, contact 

manifolds are special solutions of Einstein fields equation with some 

certain conditions. Thus, these type of manifolds have many applications 

in the theory of relativity. In 1960s many developments occurred in the 

Riemannian geometry of contact manifolds, by tensorial viewpoint. 

Especially, Sasaki used tensorial approach for the Riemannian geometry 

of contact manifolds  which is similar to the almost complex structures (see 

[2]). Later, the subject was become an interesting notion and took the 

attention of researchers who have been working on differential geometry.  

Along with many other studies, some subclasses of contact manifolds have 

been defined.  An important one of these subclasses is the contact pair 

structures.   

A Riemannian manifold with a contact pair structure is called as a 

contact pair manifold. These type of manifolds were firstly studied in [3] 

as bicontact manifolds. The authors worked on Calabi-Eckman manifolds 

by considering complex manifolds. They obtained some results on the 

contact and complex structures. The notion of bicontact manifolds have 

been studied under the name of contact pairs in the 2000s by Bande  and 

Hadjar. They constructed almost contact structure on a contact pair 

manifold and defined the associated metric [4].  In 2010, the normality of 

an almost contact metric pair structure was studied in [5]. In 2020, 

presented author  has defined the notion of generalized quasi-Einstein 

normal metric contact pair (NMCP) manifolds and obtained some results 

on curvature relations [6]. Also, same author worked on certain flatness 

conditions on NMCP manifolds in [7,8] and examined NMCP manifolds 

under semi-symmetry conditions [9].  
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A conformal transformation is a map which converts a metric to 

another with preserving angle between two vector fields. Conformal 

curvature tensor on a Riemann manifold is a curvature tensor of the 

(1,3) type that is invariant under conformal transformations. This tensor 

gives important information about the Riemann geometry of the manifold. 

If it vanishes then the manifold is said to be conformally flat, i.e  the 

manifold is flat under conformal transformations. A concircular 

transformation is a special conformal transformation and, preserves the 

geodesic circle. These type of transformations and their applications to 

differential geometry were studied by Yano [10]. In same paper Yano 

defined concircular curvature tensor and showed that this tensor is 

invariant under concircular transformations. A Riemannian manifold is 

called concircularly flat if this tensor vanishes. Yano and Sawaski [11] 

introduced quasi-conformal curvature tensor which includes both 

concircular and conformal curvature tensor as special cases. If this tensor 

vanishes on the manifold identically then the manifold is called quasi-

conformally flat. Flatness conditions of conformal, concircular and quasi-

conformal curvature tensors on contact manifolds has many geometric and 

physical applications. For example, while a conformal flat Sasakian 

manifold is of constant curvature [12], a normal complex contact metric 

manifold is not conformal, concircular and quasi-conformal flat [13]. On 

the other hand, a conformally flat NMCP manifold is a generalized quasi-

Einstein manifold [6]. A type of curvature tensor were defined in [14] with 

the name of   generalized quasi-conformal curvature (GQC) tensor. This 

tensor contains the concircular, conformal, quasi-conformal, conharmonic, 

projective and m-projective curvature tensors for the special values of 

coefficients. GQC curvature tensor on NMCP manifolds has been studied 

by Ünal [9].  

In this chapter, we present a review on the normal contact pair 

manifolds under certain conditions on curvature tensors. Firstly, we give 

some fundamental facts on the contact pair manifolds and curvature 

tensors. Later, we present many results on NMCP manifolds under some 

flatness conditions of these curvature tensors. Finally, we examine some 

symmetry properties of normal contact metric pair manifolds with 

curvature tensors.  

2. A REVIEW ON CONTACT PAIR MANIFOLDS  

A contact manifold is a (2 1)k   dimensional differentiable 

manifold with a contact 1-form   which satisfies   0
k

d    [2]. In 

1960s this type of manifolds was studied with tensorial approach. For this 

aim, the almost contact structure were given as similar to almost complex 

structures. After that, more researcher took their attention to this subject 
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and the contact geometry have been developed dramatically. An almost 

contact structure is defined as follow;  

2.1. Definition  

Let M  be a (2 1)k  - dimensional differentiable manifold and   

be a (1,1)-tensor field on M. If  we have ,   

 2 , 1, 0I            

for a vector field   on  M , then  , ,    is called almost contact 

structure  ( , , , )M     is called as an almost contact structure [2].  

An almost complex manifold is a complex manifold if the 

Nijenhuis tensor of almost complex structure J  is zero, that means J  is 

integrable. We have a complex structure J  on the product manifold 

M  . Similarly if   J  is integrable then  , , ,M     is called normal 

contact manifold or Sasaki manifold. Also there are many sub classes of 

almost contact manifolds which are normal or not. We refer to reader [2] 

for more details on the contact geometry.    

The another type of contact manifolds is complex contact manifolds. 

The Riemannian geometry of complex contact manifolds have been 

studied since 1970s. Although, a complex manifold seem to be similar to 

complexified of a real contact manifold; unfortunately all complex contact 

manifolds are not complexified a real contact structure. So, a complex 

contact manifold have many different properties. Complex almost contact 

structure on complex manifolds is defined as follow;  

2.2. Definition  

 A complex almost contact metric  manifold  is a complex odd 

(2 1)k   dimensional complex manifold with    

( , , , , , , , )J J J J g       structure such that 

2 2( ) ( ) ( )J I J J             

( ) 1 , ( ) 0,( )( ) 1, ( )( ) 0J J J J              

1 2 1 2 1 2 1 2( , ) ( , ), (( ) , ) ( ,( ) )g Y Y g Y Y g J Y Y g Y J Y         

where g  is a Hermitian metric on M , J  is a natural almost complex 

structure [15]. 
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The normality of complex almost contact metric manifolds were 

given by Ishihara-Konishi [15] and Korkmaz [16] . Normal complex 

contact metric manifolds were studied by several authors [13,16,17].   

Blair et al. [8] worked on Calabi-Eckman manifold similar to 

complex manifolds.  They gave a new kind of manifolds with structure, 

which was called by bicontact manifolds.  Contact pair manifolds have 

some different properties from contact and complex contact manifolds. A 

contact pair manifold is defined as follow:  

2.3. Definition  

Let M  be a k  dimensional differentiable manifold such that 

2 2 2k m n    for ,m n integers. Two 1-forms 
1 2,   on M  is called 

contact pair of type  ,m n  if we have   

1 1 2 2( ) ( ) 0m nd d       , 

1 1

1 2( ) 0, ( ) 0m nd d    . 

  1 2, ,M   is called as a contact pair manifold [4].  

We have two distributions 
1D  and 2D  which are the kernels of 1  

and 
2 , respectively. Also, two characteristic foliations of M  are given 

by 11 1 ker d F D  and 
2 2 2ker d F D .  Moreover, 1F  and  

2F

has contact forms which are induced from 
2 1,  , respectively.  The 

characteristic vector fields 1Z  and 
2Z of a contact pair  manifold are given 

by 

1 1 2 2 1 2 2 1( ) ( ) 1, ( ) ( ) 0Z Z Z Z       . 

Also, two subbundles 1TG  and 2TG  are defined as   

1 2ker ker keri iT d    G , for 1,2i  . Thus, we have 

, 1 , 2,i i jT T Z i j i j    F G . 

The tangent bundle of   1 2, ,M    can be decomposable by 

different ways. We can write 
1 1 2T T Z F G  and  

2 2 1T T Z F G . 

Therefore we get 
1 2 1 2TM T T Z Z   G G . Also we can state 

TM  H V   for 
1 2T T H G G  and 

1 2Z Z V , we call H  is 

horizontal subbundle and V  is  vertical subbundle of TM . 
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Let Y be an arbitrary vector field on M . We can write 

Y YY H V
 , where ,Y YH V

 horizontal and vertical component of Y , 

respectively. On the other hand, for 
1

1Y T F  and 
2

2Y T F , we have 

1 2Y Y Y  . Also we can write 
1 1 1

2 2( )
h

Y Y Y Z   and 

2 2 2

1 1( )
h

Y Y Y Z  , where 
1h

Y  and 
2h

Y  are horizontal parts of 
1 2,Y Y  

respectively.  Thus we have 
1 2 2 1

1 1 2 2, ( ) ( )
h h

Y Y Y Y Z Y ZY     H V

. From all these decompositions of X finally we get 

1 2 2 1

1 1 2 2

1 2 1 2

1 1 2 2

( ) ( ) ,

( ) ( ) 0, ( ) ( ) 0.

h h

h h h h

Y Y Y Y Z Y Z

Y Y Y Y









   

   
 

Almost contact metric structure on contact pair manifolds is given 

as follow:  

2.4. Definition  

A ( 2 2 2)k m n   -dimensional differentiable manifold  M  is 

called a metric almost contact pair manifold  such that  

2

1 1 2 2 ,I Z Z        1 2 0Z Z   . (1.1) 

 1 2 1 2 1 1 1 2 2 1 2 2, ( , ) ( ) ( ) ( ) ( )g Y Y g Y Y Y Y Y Y          

where   is (1,1) tensor field on M  [18]. 

As mentioned above we have two induced contact forms on the 

foliations 1F  and 
2F . For to define almost contact structures on  1F  and 

2F  we need the decomposability of  , i.e 
1 2    . If i iT T F F  

for 1 2i  , then   is said to be decomposable.   Thus,  we have an 

almost contact structure  1 1 1, ,Z     2 2 2. , ,resp Z   on

 12 .T resp TF F  if    is decomposable. Throughout the paper we assume 

that  is decomposable. Moreover, we have  

     1 1 2, , , , ), (i i i j ijg Z gY Z Y g ZZ Z  

1 2

1 11 1 2 10, 0, ,j

i i

Z Z Z

Y YZ Z Y Y             

where 
1 2     and 1 2Z Z Z   . 
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Following definition determine us the kind of Riemannian metric on 

a metric almost contact pair manifold.  

2.5. Definition  

Let 
1 2 1 2( , , , , , , )M Z Z g   be a metric almost contact pair 

manifold. The Riemannian metric g  is called [3]  

  compatible if 

1 2 1 2 1 1 1 2 2 1 2 2( , ) ( , ) ( ) ( ) ( ) ( )g Y Y g Y Y Y Y Y Y         for all 

1 2, ( )Y Y TM . 

 associated if 
1 2 1 2 1 2( , ) ( )( , )g Y Y d d Y Y     and 

1 1( , ) ( ),i ig Y Z Y  for 1,2i   and for all 
1 2, ( )Y Y TM . 

The normality of a metric almost contact manifold M  has been 

given in [18]. The authors defined two almost complex structures on M  

as,  

2 1 1 2 2 1 1 2, .J Z Z T Z Z                 

M  is said to be normal if J  and T  are integrable. With following 

theorem we have covariant derivation of   as similar to almost contact 

manifolds.  

2.6. Theorem  

Let 
1 2 1 2( , , , , , , )M Z Z g    be a normal metric contact pair 

manifold then we have 

 
1

2

2 3 2 1 3 3 1 2

1

(( ) , ) ( ( , ) ( ) ( , ) ( )),i i i i

i

Yg Y Y d Y Y Y d Y Y Y      


    

where 
1 2 3, ,Y Y Y  are arbitrary vector fields on M [5].  

Curvature properties of NMCP manifolds were studied in [19,20]. We 

use the following statements for the Riemann curvature; 

1 2 2 1 1 21 2 3 3 3 [ , ] 3

1 2 3 4 1 2 3 4

( , ) ,

( , , , ) ( ( , ) , )

Y YY YY YY Y YR Y Y Y

R Y Y Y Y g R Y Y Y Y

     


 

for all 
1 2 3 4, , , ( )Y Y MY Y T . Also the Ricci operator is defined by 

 

( )

1

( , ) ,
dim M

i i

i

QY R Y E E


   
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and the Ricci curvature and scalar curvature are given by  

 
1 2 1 2( , ) ( , )Ric Y Y g QY Y  and  

( )

1

( , )
dim M

i i

i

scal Ric E E


   

where ,1 ( )iE i dim M   are orthonormal basis of M .  

On the other hand, we have following relations [19,20]; 

1 3 1 3 1 1 2 2 3 1 2 2

1 3 1 1 2 2 3 2 2 1

( , , , ) ( , ) ( ) ( , ) ( )

( , ) ( ) ( , ) ( )

R Y Z Z Y d Y Y Y d Y Y Y

d Y Y Y d Y Y Y

     

     

 

 
 

 

and for 
4 5, ( )Y Y  H  we get  

4 5 4 5( , , , ) ( , )R Y Z Z Y g Y Y    

4 5 1 5 4 1 2 5 4 2( , ) ( , ) ( , ) ,R Z Y Y d Y Y Z d Y Y Z       

2

1 1( , ) .R Y Z YZ     

Let take an orthonormal basis of M  as follow:  

1 2 1 2 1 2

1 2 1 2

{ , ,..., , , ,..., , , ,..., ,

, ,..., , , }

p m m m n

m

m

m

E E E E E E E E E

E E E Z Zn

  

  

  

 

 

then for all 
1 ( )Y TM  we get the Ricci curvature of M  as  

 
2 2

1 1 1 1 2 2 1

1

( , ) ( , ) ( ) ( , ) ( ) .
m n

i i i i

i

Ric Y Z d E E Y d E E Y     




   

So, we obtain the following results [20]: 

1 1

1 1

2 2 1 2

( , ) 0, for Y ( ),

( , ) 2 2 , ( , ) 2 ,

( , ) 2 , ( , ) 0.

Ric Y Z

Ric Z Z m n Ric Z Z m

Ric Z Z n Ric Z Z

 

  

 

H

  

A generalized quasi-Einstein (GQE )  manifold is a generalization 

of quasi-Einstein manifolds [21]. These type of manifolds were defined by 

Chaki [22] and De and Ghosh [23]. In this study we follow the definition 

of De and Ghosh. Also, GQE manifolds have arisen in the solutions of 

Einstein fields equations in general relativity. Unal [6] studied on the 

NMCP manifolds which are GQE manifolds.  
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2.7. Definition  

A (2 2 2)k m n    dimensional NMCP  manifold M is said to 

be a generalized quasi-Einstein manifold if its Ricci tensor is not 

identically zero and satisfies; 

       

   

1 2 1 2 1 1 1 2

2 1 2 2

Ric , g , (2 )

(2 )

Y Y Y Y m Y Y

n Y Y

   

  

  

 
 

          

for all vector fields 
1 2, ( )Y Y TM  and  is non-zero scalar [6]. 

By the following lemma we can determine a NMCP GQE manifold 

via decomposition of vector fields.  

2.8. Lemma  

A NMCP is a GQE manifold if and only if we have       

1 2 1 2( , ) ( , )Ric Y Y g Y Y  for all 1 2, ( )Y Y  H  [6]. 

With the following theorem we state the existence of NMCP GQE 

manifolds.  

2.9. Theorem  

Let M  be  a k -dimensional NMCP manifold with scalar curvature 

2scal k  . If we have the relation 

2 3 1 4

1 3 2 4 2 3 1 4

1 3 2 4

( , ) ( , )

1
( , ) ( , ) ( 2)[ ( , ) ( , )

2

( , ) ( , )]

Ric Y Y Ric Y Y

Ric Y Y Ric Y Y scal k g Y Y g Y Y

g Y Y g Y Y

   



  

M  for all 
1 42 3, , , ( )Y Y MY Y T , then M  is a GQE manifold [6].   

Let   be a plane section in QT M  for any Q M . The sectional 

curvature of   is given as ( ) ( )Sec Sec u v   ,  where ,u v  orthonormal 

vector fields . For any ( )p q -dimensional subspace 

, 2QT M m n k   L , its scalar curvature ( )scal L  is denoted by 

1 ,

( ) ( )i j

i j m n

scal Sec E E
  

 L  

where 
1,..., kE E  is any orthonormal basis of L  []. When QT ML

, the scalar curvature  is just the scalar curvature  ( )scal Q  of M  at 

Q M .  
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By following theorem we present the characterization of NMCP 

GQE manifolds.  

2.10. Theorem  

An ( 2 2 2)k m n    dimensional NMCP is a GQE manifold if 

and only if there exist a function   on M  satisfying  

1 2

1 2

1 2

( ) sec( ), ,

( ) sec( ), ,

( ) sec( ), ,

Q

Q

Q Q

scal P m n P Z Z T P

scal N m n N Z Z T N

scal R n m P Z T R Z T R

  

 

 

    

   

    

  

where ( 1)m n   plane sections ,P R  and ( )m n plane section N ; 

,P N 
 and R

 denote the orthogonal complements of ,P N  and R in 

QT M , respectively [6]. 

De and Ghosh defined the notion of generalized quasi-constant 

curvature for a Riemannian manifold. 

2.11. Definition  

 A NMCP manifold M  is called a space of  generalized quasi-

constant curvature if we have  

1 2 3 4 2 3 1 4 1 3 2 4

1 4 1 2 1 3 1 3 1 2 1 4

2 3 1 1 1 4 2 4 1 1 1 3

1 4 2 2 2 3 1 3 2 2 2 4

2 3 2 1 2

( , , , ) [ ( , ) ( , ) ( , ) ( , )]

[ ( , ) ( ) ( ) ( , ) ( ) ( )

( , ) ( ) ( ) ( , ) ( ) ( )]

[ ( , ) ( ) ( ) ( , ) ( ) ( )

( , ) ( ) (

R Y Y Y Y A g Y Y g Y Y g Y Y g Y Y

B g Y Y Y Y g Y Y Y Y

g Y Y Y Y g Y Y Y Y

C g Y Y Y Y g Y Y Y Y

g X X X

   

   

   

 

 

 

 

 

 4 2 4 2 1 2 3) ( , ) ( ) ( )]X g Y Y Y Y 

 

 

for all 
1 2 3 3, , , ( )Y Y Y Y TM , where , ,A B C  are constant [23].  

Presented author [6] examined NMCP manifolds are space of 

generalized quasi-constant curvature and he proved that such manifolds are 

generalized quasi-Einstein manifolds.  

3.  FLATNESS OF CURVATURE TENSORS ON NMCP 

MANIFOLDS 

Let V  be a vector space , g be positive defined metric on V  and 

let define a map T by:  
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   1 2 1 2

: ( , )

, ,

V V Hom V V

Y Y Y Y

 



T

T
  

If T has following properties then it is said to be a curvature tensor:  

1.    1 2 1 2, ,Y Y Y Y T T  

2.      1 2 3 4 1 2 4 3, , , ,g Y Y Y Y g Y Y Y Y T T  

3.      1 2 3 2 3 1 3 1 2, , , 0Y Y Y Y Y Y Y Y Y  T T T  

for all 1 2 3, ,Y Y Y V .  If V  is the tangent space of a manifold then we can 

define any curvature tensor on this manifold. One of canonical example of 

curvature tensors is well known Riemannian curvature tensor.  

A Euclidean space is a manifold with zero Riemannian curvature 

tensor. This mean that the Euclidean space is flat. Flatness is measured 

with the being zero of the Riemannian curvature tensor of a Riemannian 

manifold.  If a Riemannian manifold is flat it is understood that the 

manifold is locally Euclidean. Therefore, the flatness is an important 

notion for the classification of Riemannian manifolds. Some special maps 

can transform a Riemannian manifold to a Euclidean space. One of them 

is conformal maps.  If a Riemannian manifold could be transformed to a 

Euclidean space with conformal maps then we recall this manifold by 

conformally flat. A conformal map has a curvature invariant which is 

called a conformal curvature tensor. Thus, we determine the conformally 

flatness with this tensor. Conformal curvature tensor on a 

(2 2 2)k m n     dimensional NMCP manifold is defined as follow:  





1 2 3 1 2 3 2 3 1

1 3 2 1 3 2 2 3 1

1 3 2 2 3 1

( , ) ( , ) ( , )
(2 2 1)(2 2 )

1
( , ) ( ( , ) ( , )

2 2

( , ) ( , ) )

scal
Y Y Y R Y Y Y g Y Y Y

m n m n

g Y Y Y g Y Y QY g Y Y QY
m n

Ric Y Y Y Ric Y Y Y

 
  

  


 

C

 

for 
1 2 3, , ( )Y Y Y M . 

A geodesic circle is defined as a curve whose first curvature is 

constant  and second curvature is identically zero. A geodesic circle is not 

in general transformed into a geodesic circle by conformal transformations. 

For to solve this issue Yano defined a new transformation which is called 

a concircular transformation. Similar to conformal curvature tensor 

concircular curvature tensor is invariant under concircular transformations. 

Also a Riemannian manifold is called concircularly flat if this tensor 
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vanishes. Concircular curvature tensor on a NMCP manifold is defined as 

follow: 

1 2 3 1 2 3

2 3 1 1 3 2

( , ) ( , )

[ ( , ) ( , ) ]
(2 2 2)(2 2 1)

Y Y Y R Y Y Y

scal
g Y Y Y g Y Y Y

m n m n



 
   

L

 

for 
1 2 3, , ( )Y Y Y M . 

The quasi-conformal curvature was defined by Yano and Sawaski [11] 

included both concircular and conformal curvature as special cases:  

1 2 3 1 2 3 2 3 1 1 3 2

2 3 1 1 3 2

2 3 1 1 3 2

( , ) ( , ) [ ( , ) ( , )

( , ) ( , ) ]

[ 2 ][ ( , ) ( , ) ]
2 2 2 2 2 1

Y Y Y aR Y Y Y b Ric Y Y Y Ric Y Y Y

g Y Y QY g Y Y QY

scal a
b g Y Y Y g Y Y Y

m n m n

  

 

  
   

C

 

for 
1 2 3, , ( )Y Y Y M . 

Conharmonic transformations are a special type of conformal 

transformations. They preserve the harmonicity property of smooth 

functions.  A conharmonic curvature tensor is known as the complex 

version of conformal curvature tensor and  it is invariant under 

conharmonic transformations. Conharmonic curvature tensor on a NMCP 

manifold M  is defined as follow:  

1 2 3 1 2 3 2 3 1 1 3 2

2 3 1 1 3 2

1
( , ) ( , ) ( , ) ( , )

4

( , ) ( , )

Y Y Y R Y Y Y Ric Y Y Y Ric Y Y Y
k

g Y Y QY g Y Y QY

  

 

K
 

for 
1 2 3, , ( )Y Y Y M . If 0K , then M  is called conharmocially flat 

NMCP manifold.  

Projective curvature tensor on a k -dimensional NMCP manifold is given 

by  

   1 2 3 1 2 3 2 3 1 1 3 2
2

1
( , ) ( , ) , ,Y Y Y R Y Y Y Ric Y Y Y Ric Y Y Y

k
    

P  

for 
1 2 3, , ( )Y Y Y M . If 0P , then M  is called projectively flat NMCP 

manifold.  

M projective curvature tensor is on a k -dimensional NMCP manifold 

is  defined as  
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1 2 3 1 2 3 2 3 1 1 3 2

2 3 1 1 3 2

1
( , ) ( , ) [ ( , ) ( , )

2( 1)

( , ) ( , ) ]

Y Y Y R Y Y Y Ric Y Y Y Ric Y Y Y
k

g Y Y QY g Y Y QY

 


 

M
 

for 
1 2 3, , ( )Y Y Y M .  If 0M , then M  is called M - projectively flat 

NMCP manifold.  

The another special curvature tensor were defined in [14] with the name of   

generalized quasi-conformal curvature tensor (GQC). A GQC curvature 

tensor W  is defined on a k -dimensional NMCP manifold as following;   

1 2 3 1 2 3 2 3 1 1 3 2

2 3 1 1 3 2

2 3 1 1 3 2

( , ( , [ ( , ) ( , ) ]

[ ( , ) ( , ) ]

1
[ ( , ) ( , ) ]

2

)

1 2

)W Y Y R Y Y Y Ric Y Y Y Ric Y Y Y

g Y Y QY g Y Y QY

scal
g Y Y Y g Y Y Y

k k

Y 




 

  

 

 
    

  

 

for all 
1 2 3, ,Y Y Y ( )TM . For the special values of , ,    we have same 

special curvature tensors;  

      Curvature Tensor 

0 0 0 Riemann (R) 

1

2 1k



 

1

2 1k



 

1 Conformal ( C ) 

1

2 1k



 

1

2 1k



 

0 Conharmonic  (K ) 

0 0 1 
Concircular ( C ) 

1

2k
  

0 0 Projective ( P ) 

4

1

k
  

1

4k
  

0 m-Projective ( M ) 

Table 1. Some curvature tensors derived from GQC curvature tensor 

The flatness of  GQC curvature tensor also determines the flatness 

of special curvature tensors mentioned above table.  Blair, Bande and 

Hadjar [7] studied on conformal flatness of NMCP manifolds and they 

proved following theorem.  
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3.1. Theorem  

A conformally flat NMCP manifold is locally isometric to the Hopf 

manifold 
2 1 1(1)qS S   [24]. 

In 2020, presented author obtained following results for the flatness 

of conformal, concircular and quasi-conformal curvature tensors.  

3.2. Theorem  

A conformal flat NMCP manifold is an Einstein manifold with  

positive scalar curvature and has positive sectional curvature [7].  

3.3. Theorem  

A concircular flat normal contact pair manifold is Einstein manifold 

[7]. 

3.4. Theorem  

A quasi-conformally flat NMCP manifold is an Einstein manifold 

with a positive scalar curvature and is a space of constant curvature [7].  

A NMCP manifold M  is called by GQC-flat if  1 2 3, 0Y Y Y W  

and also, M  is said to be GQC-Z-flat if  1 2, 0ZY Y W  for all 
1 2 3, ,Y Y Y  

vector fields on M .  Some results on the flatness conditions of generalized 

quasi-conformal curvature tensor were obtained in [8] by Ünal.  

3.5. Theorem  

A GQC-Z-flat and GQC-flat NMCP manifold is GQE manifold [8].  

With the following theorem as we see that a NMCP manifold could 

an example of space forms.  

3.6. Theorem  

Let M  be an Einstein NMCP manifold. If M  is also GQC-flat, 

then M  is a generalized real space form [8]. 

By the following result we have an example of space of generalized 

quasi-constant curvature.  

3.7. Theorem  

Let M  be a GQE NMCP manifold. If M  is GQC-flat then it is a 

space of generalized quasi-constant curvature [8].  

The sectional curvature of a Riemannian manifold give us 

significant geometric interpretation. In contact geometry,  we have  -
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sectional curvature and   sectional curvature. Similarly, we have  -

sectional curvature and Z  sectional curvature for NMCP manifolds.  

3.8. Theorem  

The sectional curvature of a GQC-flat NMCP manifold is given by  

( , ) ( ( 2))
1 ( 2)

1 1
( 3)

2 1 2 2 1 2

sec X Y scal k
k

scal scal
k

k k k k

 


 

      


    

  

   
          

    

 

for unit and mutually orthogonal horizontal vector fields ,X Y [9]. 

3.9. Theorem  

Let  M  be a GQC-flat NMCP manifold.  If the scalar curvature is 

constant, then M  has constant sectional curvature [8]. 

3.10. Theorem  

A NMCP manifold  is M projectively flat if and only if it is of 

generalized quasi-constant curvature [6] . 

 3.11. Theorem  

Let M  be M projectively flat NMCP manifold .  If M  is also 

concircularly flat then it is locally isometric to Hopf manifold 
2 1 1(1)qS S  [6].  

4. SEMI-SYMMETRY CONDITIONS ON NMCP 

MANIFOLDS 

For a (1,3) type curvature tensor T , 
1 2( , ).R Y Y T  is defined by  

1 2 1 2 1 21 2 [ , ]( , ). = .Y Y Y Y Y YR Y Y     T T T T  

The  operation of "  "  acts like as a derivation on curvature tensor 

and it is defined as follow ;  

 

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

3 1 2 4 5 3 4 1 2 5

( ( , ). )( , ) ( , ) ( , ) ( ( , ) , )

( , ( , ) ) ( , ) ( , ) .

R Y Y Y Y Y R Y Y Y Y Y R Y Y Y Y Y

Y R Y Y Y Y Y Y R Y Y Y

 

 

T T T

T T
 

On the other hand for  (0,2) -type tensor field S on M ,  we have  

 
1 2 3 4 1 2 3 4 3 1 2 4( ( , ) )( , ) ( ( , ) , ) ( , ( , ) ).Y Y Y Y Y Y Y Y Y Y Y Y  T S S T S T  
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The notion of locally symmetry has the important position to study 

the Riemannain geometry of manifolds. A Riemannian manifold is locally 

symmetric if 0R  . This type of Riemannian manifolds are a 

generalization of manifolds of constant curvatrure. As a generazlization of 

locally symmetry we have semi-symmetric Riemann manifolds. A 

Riemannian manifold is called semi-symmetric if 0=.RR . We also 

generalized the concept of semi-syemmetry as follow; if 0=.R  then the 

manifold is called T semi symmetric.  

Similar to locally symmetric manifold, A Riemann manifold is 

called as locally Ricci symmetric if 0Ric  . Also, if 0R Ric  then 

the manifold is called Ricci-semi-symmetric. As a generalization of this 

notion we have RicciT -semi-symmetric i.e 0Ric T  .   

Locally symmetric NMCP manifolds were studied in [24].  The 

authors proved following theorem: 

4.1. Theorem  

Let M  be a complete, locally symmetric, normal, metric contact 

pair. Then either the universal covering space of M  is a Calabi-Eckmann 

manifold, 
2 1 2 1(1) 1 ( )m nS S  , and M is compact, or the universal 

covering space of M is 
2 1(1)mS    [24]. 

Presented author studied on some semi-symmetry conditions with 

related to concircular curvature tensor and obtained following results:  

4.2. Theorem  

A Ricci semi-symmetric NMCP manifold is a  generalized quasi-

Einstein manifold [9]. 

4.3. Theorem  

A concircular Ricci-semi symmetric NMCP manifold is a 

generalized quasi-Einstein manifold [9]. 

4.4. Theorem  

Let   be an NMCP manifold satisfying 
1( , ). 0Y Z R L  for any 

1 ( )Y TM  . Then, the scalar curvature of  M  is  

(2 2 2)(2 2 1)scal m n m n      or the sectional curvature of   is  1 

[9]. 

4.5. Theorem  

A normal metric  contact pair manifold satisfying  
1( , ). 0R Y Z L  

for any 
1 ( )Y TM ,  is a space of constant curvature [9]. 
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4.6. Theorem  

Let M  be an NMCP manifold satisfying  
1( , ). 0R Y Z L  for any 

1 ( )Y TM . Then, M  is a generalized quasi-Einstein manifold [9]. 

4.7. Theorem  

An NMCP manifold M  satisfying  
1( , ). 0Y Z L L  for any 

1 ( )Y TM ,  is a space of constant curvature or the scalar curvature is 

(2 2 2)(2 2 1)scal m n m n      [9]. 

4.8. Theorem  

Let M  be NMCP manifold satisfying  
1( , ). 0Y Z L L , for any 

1 ( ).Y TM Then, M   is a generalized quasi-Einstein manifold [9]. 

4.9. Theorem  

A NMCP manifold is M projectively semi-symmetric if and only 

if M  is a generalized quasi-Einstein manifold [6]. 

4.10. Theorem  

A NMCP manifold  satisfies 0Ric W  if and only M  is a 

generalized quasi-Einstein manifold [6]. 

 5. CONCLUSIONS 

Contact geometry, which is an important area of differential 

geometry, has a major role in theoretical physics as well as its applications 

in differential geometry. For this reason, both differential geometries and 

theoretical physicists have been working on the contact geometry. Except 

for theoretical physics, there are many applications of the contact geometry 

to medical science, technology, geometric optics, geometric quantization, 

control theory, thermodynamics, and classical mechanics.  The 

developments of contact geometry applications and the strengthening of 

the theoretical background depend on the work to be done in the field of 

differential geometry.  In this context, studies on the Riemannian geometry 

of contact manifolds are very important. On the other hand, solutions of 

the Einstein fields equations are a major notion in the relativity theory. 

Einstein manifolds which are arisen from Einstein fields equations, quasi-

Einstein manifolds which are also the solution of Einstein fields equations 

and generalized quasi-Einstein manifolds which are the generalization of 

Einstein and quasi-Einstein manifolds are significant type of manifolds in 

the Riemannian geometry.  For example,  Einstein manifolds are a 

special kind of quasi-Einstein manifolds that come from contact geometry. 

Also complex  Einstein manifolds [17] are another kind of GQE 
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manifolds. With the NMCP manifolds, we obtain another kind of 

generalized quasi-Einstein manifolds. Thus, we see that this type of 

manifolds has many applications in the general relativity. All these results 

show that contact pair manifolds are an important study subject. Thanks to 

the important benefits obtained by curvature tensors on the differential 

geometry of manifolds, we have revealed some important properties of this 

type of manifolds. By bringing together the results of curvature tensors on 

NMCP manifolds, with this book chapter we have created a resource for 

important future work. The geometry of contact pairs, where there are 

many more open problems, awaits the interest of researchers working in 

the field of contact geometry. 

  



104 

REFERENCES 

1. Kholodenko, A. L. 2013. Applications of contact geometry and 

topology in physics.  World Scientific. 

2. Blair, D. E., 2010.  Riemannian geometry of contact and symplectic 

manifolds,  V.203 ,2nd Edition, Progress in Mathematics,   

Springer Science Business Media 

3. Blair, D. E., Ludden G. D., and Yano, K. 1974.  Geometry of complex 

manifolds similar to the Calabi-Eckmann manifolds,  Journal of 

Differential Geometry, 9(2), 263-274. 

4. Bande, G. and Hadjar, A. 2005. Contact pairs , Tohoku Mathematical 

Journal,  Second Series, 57(2), 247-260.  

5. Bande, G. and Hadjar, A. 2010. On normal contact pairs International 

Journal of Mathematics,  21(06), 737-754.  

6. Ünal, İ. 2020. Generalized Quasi-Einstein Manifolds in Contact 

Geometry. Mathematics,  8(9), 1592. 

7. Ünal, İ., 2020.  Some flatness conditions on normal metric contact 

Pairs Communications Faculty of Sciences University of Ankara 

Series A1 Mathematics and Statistics. 69(2): 262-271. 

8. Ünal, İ., 2020.  Generalized Quasi-Conformal Curvature Tensor On 

Normal Metric Contact Pairs, International Journal of Pure and 

Applied Sciences , accepted.  

9. Ünal, İ., 2021. On Metric Contact Pairs with Certain Semi-Symmetry 

Conditions. Politeknik Dergisi, , 1-1 DOI: 10.2339/politeknik. 

769662 

10. Yano, K., 1940.  Concircular geometry I. Concircular 

transformations. Proceedings of the Imperial Academy, 16(6), 

195-200. 

11. Yano, K. and Sawaski, S., 1968.  Riemannian manifolds admitting a 

conformal transformation group, J. Differential Geom. 2 , 161–

184. 

12. De, U. C.  and Shaikh, A.A., 2009.  Complex Manifolds and Contact 

Manifolds, 1st Edition, Narosa Publishing House Pvt. Ltd., New 

Delhi, 320 pages.  

13. Turgut Vanlı, A., and Ünal, İ., 2017.  Conformal, concircular, quasi-

conformal and conharmonic flatness on normal complex contact 

metric manifolds. International Journal of Geometric Methods 

in Modern Physics,  14(05), 1750067. 

14. Baishya, K. K. and Chowdhury P.R., 2016.  On generalized quasi-

conformal ( , )N   -manifolds. Communications of the Korean 

Mathematical Society ,  31.1  163-176.  

15. Ishihara, S. and Konishi, M., 1982.  Complex almost contact 

structures in a complex contact manifold, Kodai Math. J. 5 , 30–

37. 



 

105 

16. Korkmaz , B., 2000. Normality of complex contact manifolds, Rocky 

Mountain Journal of Mathematics, 30 , 1343–1380. 

17. Turgut Vanlı, A. and Ünal, İ., 2017. On complex  -Einstein normal 

complex contact metric manifolds. Communications in 

Mathematics and Applications.  8, 301–313. 

18. Bande, G. and Hadjar, A., 2009.  Contact pair structures and 

associated metrics In Differential Geometry ,  pp. 266-275.  

19. Bande, G., Blair, D. E. and Hadjar, A., 2013. On the curvature of 

metric contact pairs Mediterranean journal of mathematics, 

10(2), 989-1009. 

20. Bande, G., Blair, D. E. and Hadjar, A., 2015.  Bochner and conformal 

flatness of normal metric contact pairs,  Annals of Global 

Analysis and Geometry, 48(1), 47-56. 

21. De, U.C.; Ghosh, G.C., 2004. On quasi Einstein manifolds. Periodica 

Mathematica Hungarica ,  48, 223–231. 

22. Chaki, M.C., 2001.  On Generalized quasi-Einstein manifold. 

Publicationes Mathematicae Debrecen, 58, 638–691. 

23. De, U. C. and Ghosh, G. C., 2004. On generalized quasi–Einstein 

manifolds, Kyungpook Mathematical Journal 44 , 607–615.  

24. Bande, G., Blair, D.E. 2013. Symmetry in the geometry of metric 

contact pairs. Mathematische Nachrichten 286, 1701–1709 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



106 

 

 


